Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 10(2): 226-35, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11266609

ABSTRACT

Chorionic gonadotropin (hCG) is a heterodimeric placental glycoprotein hormone essential for human reproduction. Twenty hCG beta-subunit residues, termed the seatbelt, are wrapped around alpha-subunit loop 2 (alpha 2) and their positions "latched" by a disulfide formed by cysteines at the end of the seatbelt (Cys 110) and in the beta-subunit core (Cys 26). This unique arrangement explains the stability of the heterodimer but raises questions as to how the two subunits combine. The seatbelt is latched in the free beta-subunit. If the seatbelt remained latched during the process of subunit combination, formation of the heterodimer would require alpha 2 and its attached oligosaccharide to be threaded through a small beta-subunit hole. The subunits are known to combine during oxidizing conditions in vitro, and studies described here tested the idea that this requires transient disruption of the latch disulfide, possibly as a consequence of the thioredoxin activity reported in hCG. We observed that alkylating agents did not modify either cysteine in the latch disulfide (Cys 26 or Cys 110) during heterodimer formation in several oxidizing conditions and had minimal influence on these cysteines during combination in the presence of mild reductants (1--3 mM beta-mercaptoethanol). Reducing agents appeared to accelerate subunit combination by disrupting a disulfide (Cys 93--Cys 100) that forms a loop within the seatbelt, thereby increasing the size of the beta-subunit hole. We propose a mechanism for hCG assembly in vitro that depends on movements of alpha 2 and the seatbelt and suggest that the process of glycoprotein hormone subunit combination may be useful for studying the movements of loops during protein folding.


Subject(s)
Chorionic Gonadotropin/chemistry , Alkylating Agents/pharmacology , Blotting, Western , Cysteine/chemistry , Dimerization , Disulfides , Glycosylation , Humans , Mass Spectrometry , Peptides/chemistry , Protein Binding , Protein Conformation , Protein Structure, Secondary , Thioredoxins/metabolism , Time Factors
2.
Eur J Biochem ; 242(3): 608-18, 1996 Dec 15.
Article in English | MEDLINE | ID: mdl-9022688

ABSTRACT

The alpha and beta chains from human recombinant gonadotropins follitropin, lutropin and choriogonadotropin expressed in CHO cells have been structurally characterised both at the protein and at the carbohydrate level by using advanced mass spectrometric procedures. The three alpha chains share the same amino acid sequence while they display different glycosylation patterns. The oligosaccharide structures detected belong to the complex-type glycans with different degree of sialylation. Partial proteolytic processing occurred at the N-terminus of the follitropin beta chain and at the C-terminus of the lutropin beta chain. The N-linked glycans from the three beta chains were found to contain fucosylated and sialylated diantennary and triantennary complex-type structures. The follitropin beta chain showed the presence of N-acetyllactosamine repeats on the antennae. The overall structure of the recombinant glycohormones corresponds to their natural counterparts with the exception that sulphated terminal glycosylation is missing.


Subject(s)
Chorionic Gonadotropin/chemistry , Follicle Stimulating Hormone/chemistry , Glycoproteins/chemistry , Luteinizing Hormone/chemistry , Recombinant Proteins/chemistry , Amino Acid Sequence , Animals , CHO Cells , Cricetinae , Humans , Mass Spectrometry , Molecular Sequence Data , Oligosaccharides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...