Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 8(18): 4407-4412, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28853582

ABSTRACT

Single methylation at position C10 of the all-trans retinal protonated Schiff base switches its excited-state decay in methanol from a slower picosecond into an ultrafast, protein-like subpicosecond process. QM/MM modeling in conjunction with on-the-fly excited-state dynamics provides fundamental understanding of the fine-tuning mechanics that "catalyzes" the photoinduced decay of solvated retinals. Methylation alters the interplay between the ionic S1 and covalent S2 states, reducing the excited-state lifetime by favoring the formation of a S1 transient fluorescent state with fully inverted bond lengths that accounts for the recorded transient spectroscopy and from which a space-saving conical intersection seam is quickly (<1 ps) reached. Minimal and apparently innocent chemical modifications thus affect the characteristic intramolecular charge-transfer of the S1 state as well as the interaction with the covalent S2 excited state, eventually providing the high tunability of retinal photophysics and photochemistry and delivering a new concept for the rational design of retinal-based photoactive molecular devices.

2.
Faraday Discuss ; 177: 345-62, 2015.
Article in English | MEDLINE | ID: mdl-25607949

ABSTRACT

The SOS//QM/MM [Rivalta et al., Int. J. Quant. Chem., 2014, 114, 85] method consists of an arsenal of computational tools allowing accurate simulation of one-dimensional (1D) and bi-dimensional (2D) electronic spectra of monomeric and dimeric systems with unprecedented details and accuracy. Prominent features like doubly excited local and excimer states, accessible in multi-photon processes, as well as charge-transfer states arise naturally through the fully quantum-mechanical description of the aggregates. In this contribution the SOS//QM/MM approach is extended to simulate time-resolved 2D spectra that can be used to characterize ultrafast excited state relaxation dynamics with atomistic details. We demonstrate how critical structures on the excited state potential energy surface, obtained through state-of-the-art quantum chemical computations, can be used as snapshots of the excited state relaxation dynamics to generate spectral fingerprints for different de-excitation channels. The approach is based on high-level multi-configurational wavefunction methods combined with non-linear response theory and incorporates the effects of the solvent/environment through hybrid quantum mechanics/molecular mechanics (QM/MM) techniques. Specifically, the protocol makes use of the second-order Perturbation Theory (CASPT2) on top of Complete Active Space Self Consistent Field (CASSCF) strategy to compute the high-lying excited states that can be accessed in different 2D experimental setups. As an example, the photophysics of the stacked adenine-adenine dimer in a double-stranded DNA is modeled through 2D near-ultraviolet (NUV) spectroscopy.


Subject(s)
Adenine/chemistry , DNA/chemistry , Molecular Dynamics Simulation , Photons , Quantum Theory , Solvents/chemistry , Spectrum Analysis/methods , Thermodynamics , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...