Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Skeletal Radiol ; 52(11): 2239-2257, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36737484

ABSTRACT

Ankle, hindfoot, and midfoot osteoarthritis (OA) is most commonly posttraumatic and tends to become symptomatic in younger patients. It often results from instability due to insufficiency of supportive soft tissue structures, such as ligaments and tendons. Diagnostic imaging can be helpful to detect and characterize the distribution of OA, and to assess the integrity of these supportive structures, which helps determine prognosis and guide treatment. However, the imaging findings associated with OA and instability may be subtle and unrecognized until the process is advanced, which may ultimately limit therapeutic options to salvage procedures. It is important to understand the abilities and limitations of various imaging modalities used to assess ankle, hindfoot, and midfoot OA, and to be familiar with the imaging findings of OA and instability patterns.


Subject(s)
Ankle , Osteoarthritis , Humans , Foot/diagnostic imaging , Ankle Joint/diagnostic imaging , Osteoarthritis/diagnostic imaging , Diagnostic Imaging
2.
Magn Reson Med ; 88(3): 1355-1369, 2022 09.
Article in English | MEDLINE | ID: mdl-35608238

ABSTRACT

PURPOSE: In radial abdominal imaging, it has been commonly observed that signal from the arms cause streaks due to system imperfections. We previously introduced a streak removal technique (B-STAR), which is inherently spatially variant and limited to work in image space. In this work, we propose a spatially invariant streak cancellation technique (CACTUS), which can be applied in either image space or k-space and is compatible with iterative reconstructions. THEORY AND METHODS: Streak sources are typically spatially localized and can be represented using a low-dimensional subspace. CACTUS identifies the streak subspace by leveraging the spatial redundancy of receiver coils and projects the data onto the streak null space to eliminate the streaks. When applied in k-space, CACTUS can be combined with iterative reconstructions. CACTUS was tested in phantoms and in vivo abdominal imaging using a radial turbo spin-echo pulse sequence. RESULTS: In phantoms, CACTUS improved T2 estimation in comparison to previous de-streaking methods. In vivo experiments showed that CACTUS reduced streaks and yielded T2 estimation, in regions affected by streaks, closer to a streak-free reference. Evaluation using a clinical abdominal dataset (n = 20) showed that CACTUS is comparable to B-STAR and yields significantly better signal preservation and streak cancellation than coil removal and suppression methods. CONCLUSION: CACTUS provides superior signal preservation and streak reduction performance compared to coil removal and suppression methods. As a clear advantage over B-STAR, CACTUS can be integrated with iterative reconstruction methods. In abdominal T2 mapping, CACTUS improves the accuracy of parameter estimation in areas affected by streaks.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Abdomen/diagnostic imaging , Algorithms , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Tomography, X-Ray Computed
3.
J Magn Reson Imaging ; 55(1): 289-300, 2022 01.
Article in English | MEDLINE | ID: mdl-34254382

ABSTRACT

BACKGROUND: T2 mapping is of great interest in abdominal imaging but current methods are limited by low resolution, slice coverage, motion sensitivity, or lengthy acquisitions. PURPOSE: Develop a radial turbo spin-echo technique with refocusing variable flip angles (RADTSE-VFA) for high spatiotemporal T2 mapping and efficient slice coverage within a breath-hold and compare to the constant flip angle counterpart (RADTSE-CFA). STUDY TYPE: Prospective technical efficacy. SUBJECTS: Testing performed on agarose phantoms and 12 patients. Focal liver lesion classification tested on malignant (N = 24) and benign (N = 11) lesions. FIELD STRENGTH/SEQUENCE: 1.5 T/RADTSE-VFA, RADTSE-CFA. ASSESSMENT: A constrained objective function was used to optimize the refocusing flip angles. Phantom and/or in vivo data were used to assess relative contrast, T2 estimation, specific absorption rate (SAR), and focal liver lesion classification. STATISTICAL TESTS: t-Tests or Mann-Whitney Rank Sum tests were used. RESULTS: Phantom data did not show significant differences in mean relative contrast (P = 0.10) and T2 accuracy (P = 0.99) between RADTSE-VFA and RADTSE-CFA. Adding noise caused T2 overestimation predominantly for RADTSE-CFA and low T2 values. In vivo results did not show significant differences in mean spleen-to-liver (P = 0.62) and kidney-to-liver (P = 0.49) relative contrast between RADTSE-VFA and RADTSE-CFA. Mean T2 values were not significantly different between the two techniques for spleen (T2VFA  = 109.2 ± 12.3 msec; T2CFA  = 110.7 ± 11.1 msec; P = 0.78) and kidney-medulla (T2VFA  = 113.0 ± 8.7 msec; T2CFA  = 114.0 ± 8.6 msec; P = 0.79). Liver T2 was significantly higher for RADTSE-CFA (T2VFA  = 52.6 ± 6.6 msec; T2CFA  = 60.4 ± 8.0 msec) consistent with T2 overestimation in the phantom study. Focal liver lesion classification had comparable T2 distributions for RADTSE-VFA and RADTSE-CFA for malignancies (P = 1.0) and benign lesions (P = 0.39). RADTSE-VFA had significantly lower SAR than RADTSE-CFA increasing slice coverage by 1.5. DATA CONCLUSION: RADTSE-VFA provided noise-robust T2 estimation compared to the constant flip angle counterpart while generating T2-weighted images with comparable contrast. The VFA scheme minimized SAR improving slice efficiency for breath-hold imaging. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1.


Subject(s)
Magnetic Resonance Imaging , Data Collection , Humans , Phantoms, Imaging , Prospective Studies
4.
Magn Reson Imaging ; 79: 28-37, 2021 06.
Article in English | MEDLINE | ID: mdl-33722634

ABSTRACT

PURPOSE: To develop a fast volumetric T1 mapping technique. MATERIALS AND METHODS: A stack-of-stars (SOS) Look Locker technique based on the acquisition of undersampled radial data (>30× relative to Nyquist) and an efficient multi-slab excitation scheme is presented. A principal-component based reconstruction is used to reconstruct T1 maps. Computer simulations were performed to determine the best choice of partitions per slab and degree of undersampling. The technique was validated in phantoms against reference T1 values measured with a 2D Cartesian inversion-recovery spin-echo technique. The SOS Look Locker technique was tested in brain (n = 4) and prostate (n = 5). Brain T1 mapping was carried out with and without kz acceleration and results between the two approaches were compared. Prostate T1 mapping was compared to standard techniques. A reproducibility study was conducted in brain and prostate. Statistical analyses were performed using linear regression and Bland Altman analysis. RESULTS: Phantom T1 values showed excellent correlations between SOS Look Locker and the inversion-recovery spin-echo reference (r2 = 0.9965; p < 0.0001) and between SOS Look Locker with slab-selective and non-slab selective inversion pulses (r2 = 0.9999; p < 0.0001). In vivo results showed that full brain T1 mapping (1 mm3) with kz acceleration is achieved in 4 min 21 s. Full prostate T1 mapping (0.9 × 0.9 × 4 mm3) is achieved in 2 min 43 s. T1 values for brain and prostate were in agreement with literature values. A reproducibility study showed coefficients of variation in the range of 0.18-0.2% (brain) and 0.15-0.18% (prostate). CONCLUSION: A rapid volumetric T1 mapping technique was developed. The technique enables high-resolution T1 mapping with adequate anatomical coverage in a clinically acceptable time.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Computer Simulation , Humans , Male , Phantoms, Imaging , Reproducibility of Results
5.
Phys Med Biol ; 66(4): 04NT03, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33333497

ABSTRACT

Subspace-constrained reconstruction methods restrict the relaxation signals (of size M) in the scene to a pre-determined subspace (of size K≪M) and allow multi-contrast imaging and parameter mapping from accelerated acquisitions. However, these constraints yield poor image quality at some imaging contrasts, which can impact the parameter mapping performance. Additional regularization such as the use of joint-sparse (JS) or locally-low-rank (LLR) constraints can help improve the recovery of these images but are not sufficient when operating at high acceleration rates. We propose a method, non-local rank 3D (NLR3D), that is built on block matching and transform domain low rank constraints to allow high quality recovery of subspace-coefficient images (SCI) and subsequent multi-contrast imaging and parameter mapping. The performance of NLR3D was evaluated using Monte-Carlo (MC) simulations and compared against the JS and LLR methods. In vivo T 2 mapping results are presented on brain and knee datasets. MC results demonstrate improved bias, variance, and MSE behavior in both the multi-contrast images and parameter maps when compared to the JS and LLR methods. In vivo brain and knee results at moderate and high acceleration rates demonstrate improved recovery of high SNR early TE images as well as parameter maps. No significant difference was found in the T2 values measured in ROIs between the NLR3D reconstructions and the reference images (Wilcoxon signed rank test). The proposed method, NLR3D, enables recovery of high-quality SCI and, consequently, the associated multi-contrast images and parameter maps.


Subject(s)
Image Enhancement/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Brain/diagnostic imaging , Humans , Knee/diagnostic imaging , Monte Carlo Method , Sensitivity and Specificity
6.
Magn Reson Imaging ; 73: 152-162, 2020 11.
Article in English | MEDLINE | ID: mdl-32882339

ABSTRACT

A deep learning MR parameter mapping framework which combines accelerated radial data acquisition with a multi-scale residual network (MS-ResNet) for image reconstruction is proposed. The proposed supervised learning strategy uses input image patches from multi-contrast images with radial undersampling artifacts and target image patches from artifact-free multi-contrast images. Subspace filtering is used during pre-processing to denoise input patches. For each anatomy and relaxation parameter, an individual network is trained. in vivo T1 mapping results are obtained on brain and abdomen datasets and in vivo T2 mapping results are obtained on brain and knee datasets. Quantitative results for the T2 mapping of the knee show that MS-ResNet trained using either fully sampled or undersampled data outperforms conventional model-based compressed sensing methods. This is significant because obtaining fully sampled training data is not possible in many applications. in vivo brain and abdomen results for T1 mapping and in vivo brain results for T2 mapping demonstrate that MS-ResNet yields contrast-weighted images and parameter maps that are comparable to those achieved by model-based iterative methods while offering two orders of magnitude reduction in reconstruction times. The proposed approach enables recovery of high-quality contrast-weighted images and parameter maps from highly accelerated radial data acquisitions. The rapid image reconstructions enabled by the proposed approach makes it a good candidate for routine clinical use.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Algorithms , Artifacts , Brain/diagnostic imaging , Humans , Knee/diagnostic imaging
7.
Magn Reson Med ; 82(1): 326-341, 2019 07.
Article in English | MEDLINE | ID: mdl-30883879

ABSTRACT

PURPOSE: To design a pulse sequence for efficient 3D T2-weighted imaging and T2 mapping. METHODS: A stack-of-stars turbo spin echo pulse sequence with variable refocusing flip angles and a flexible pseudorandom view ordering is proposed for simultaneous T2-weighted imaging and T2 mapping. An analytical framework is introduced for the selection of refocusing flip angles to maximize relative tissue contrast while minimizing T2 estimation errors and maintaining low specific absorption rate. Images at different echo times are generated using a subspace constrained iterative reconstruction algorithm. T2 maps are obtained by modeling the signal evolution using the extended phase graph model. The technique is evaluated using phantoms and demonstrated in vivo for brain, knee, and carotid imaging. RESULTS: Numerical simulations demonstrate an improved point spread function with the proposed pseudorandom view ordering compared to golden angle view ordering. Phantom experiments show that T2 values estimated from the stack-of-stars turbo spin echo pulse sequence with variable refocusing flip angles have good concordance with spin echo reference values. In vivo results show the proposed pulse sequence can generate qualitatively comparable T2-weighted images as conventional Cartesian 3D SPACE in addition to simultaneously generating 3D T2 maps. CONCLUSION: The proposed stack-of-stars turbo spin echo pulse sequence with pseudorandom view ordering and variable refocusing flip angles allows high resolution isotropic T2 mapping in clinically acceptable scan times. The optimization framework for the selection of refocusing flip angles improves T2 estimation accuracy while generating T2-weighted contrast comparable to conventional Cartesian imaging.


Subject(s)
Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Adult , Algorithms , Brain/diagnostic imaging , Carotid Arteries/diagnostic imaging , Female , Humans , Knee Joint/diagnostic imaging , Male , Middle Aged , Phantoms, Imaging
8.
Magn Reson Med ; 81(6): 3915-3923, 2019 06.
Article in English | MEDLINE | ID: mdl-30756432

ABSTRACT

PURPOSE: A new method for streak artifact reduction in radial MRI based on phased array filtering. THEORY: Radial imaging in applications that require large fields-of-view can be susceptible to streaking artifacts due to gradient nonlinearities. Coil removal methods prune the coils contributing the most to streaking artifacts at the expense of signal loss. Phased array beamforming is a form of spatial filtering used to suppress unwanted signals. The proposed method uses interference covariance generated from the streaking artifact samples which are manually extracted with phased array beamforming to suppress streaking in the images. METHODS: The performance of the proposed method was evaluated on abdomen radial fast spin echo images acquired on a 1.5T Siemens scanner and compared with previously proposed methods. RESULTS: Our results demonstrate that the proposed method can effectively suppress streaking artifacts without any noticeable loss in signal levels. Coil removal methods can suppress streaks as well but they may incur significant signal loss due to coil pruning. Quantitative metrics also demonstrate the superiority of the proposed method over earlier methods. CONCLUSION: The use of interference covariance with phased array beamforming can help reduce streaking artifacts.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Abdomen/diagnostic imaging , Artifacts , Databases, Factual , Humans
9.
J Magn Reson Imaging ; 49(1): 239-252, 2019 01.
Article in English | MEDLINE | ID: mdl-30142230

ABSTRACT

BACKGROUND: T1 mapping is often used in some clinical protocols. Existing techniques are limited in slice coverage, and/or spatial-temporal resolution, or require long acquisitions. Here we present a multi-slice inversion-recovery (IR) radial steady-state free precession (radSSFP) pulse sequence combined with a principal component (PC) based reconstruction that overcomes these limitations. PURPOSE: To develop a fast technique for multi-slice high-resolution T1 mapping. STUDY TYPE: Technical efficacy study done prospectively. PHANTOM/SUBJECTS: IR-radSSFP was tested in phantoms, five healthy volunteers, and four patients with abdominal lesions. FIELD STRENGTH/SEQUENCE: IR-radSSFP was implemented at 3T. ASSESSMENT: Computer simulations were performed to optimize the flip angle for T1 estimation; testing was done in phantoms using as reference an IR spin-echo pulse sequence. T1 mapping with IR-radSSFP was also assessed in vivo (brain and abdomen) and T1 values were compared with literature. T1 maps were also compared with a radial IR-FLASH technique. STATISTICAL TESTS: A two-tailed t-test was used to compare T1 values in phantoms. A repeatability study was carried out in vivo using Bland-Altman analysis. RESULTS: Simulations and phantom experiments showed that a flip angle of 20˚ was optimal for T1 mapping. When comparing single to multi-slice experiments in phantoms there were no significant differences between the means T1 values (P = 0.0475). In vivo results show that T1 maps with spatial resolution as high as 0.69 mm × 0.69 mm × 2.00 mm (brain) and 0.83 mm × 0.83 mm × 3.00 mm (abdomen) can be generated for 84 brain slices in 3 min and 10 abdominal slices in a breath-hold; T1 values were comparable to those reported in literature. The coefficients of variation from the repeatability study were 1.7% for brain and 2.5-2.7% in the abdomen. DATA CONCLUSION: A multi-slice IR-radSSFP technique combined with a PC-based reconstruction was demonstrated for higher resolution T1 mapping. This technique is fast, motion-insensitive and yields repeatable T1 values comparable to those in literature. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:239-252.


Subject(s)
Abdomen/diagnostic imaging , Abdominal Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Algorithms , Brain/diagnostic imaging , Breath Holding , Computer Simulation , Healthy Volunteers , Humans , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted , Models, Statistical , Phantoms, Imaging , Principal Component Analysis , Prospective Studies , Reproducibility of Results
10.
Magn Reson Med ; 80(6): 2744-2758, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30009531

ABSTRACT

PURPOSE: A new reconstruction method for multi-contrast imaging and parameter mapping based on a union of local subspaces constraint is presented. THEORY: Subspace constrained reconstructions use a predetermined subspace to explicitly constrain the relaxation signals. The choice of subspace size ( K ) impacts the approximation error vs noise-amplification tradeoff associated with these methods. A different approach is used in the model consistency constraint (MOCCO) framework to leverage the subspace model to enforce a softer penalty. Our proposed method, MOCCO-LS, augments the MOCCO model with a union of local subspaces (LS) approach. The union of local subspaces model is coupled with spatial support constraints and incorporated into the MOCCO framework to regularize the contrast signals in the scene. METHODS: The performance of the MOCCO-LS method was evaluated in vivo on T1 and T2 mapping of the human brain and with Monte-Carlo simulations and compared against MOCCO and the explicit subspace constrained models. RESULTS: The results demonstrate a clear improvement in the multi-contrast images and parameter maps. We sweep across the model order space ( K ) to compare the different reconstructions and demonstrate that the reconstructions have different preferential operating points. Experiments on T2 mapping show that the proposed method yields substantial improvements in performance even when operating at very high acceleration rates. CONCLUSIONS: The use of a union of local subspace constraints coupled with a sparsity promoting penalty leads to improved reconstruction quality of multi-contrast images and parameter maps.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Algorithms , Brain Mapping , Humans , Monte Carlo Method , Reproducibility of Results , Software
11.
J Cardiovasc Magn Reson ; 20(1): 49, 2018 07 19.
Article in English | MEDLINE | ID: mdl-30025523

ABSTRACT

BACKGROUND: Double inversion recovery (DIR) fast spin-echo (FSE) cardiovascular magnetic resonance (CMR) sequences are used clinically for black-blood T2-weighted imaging. However, these sequences suffer from slice inefficiency due to the non-selective inversion pulses. We propose a multi-band (MB) encoded DIR radial FSE (MB-DIR-RADFSE) technique to simultaneously excite two slices. This sequence has improved signal-to-noise ratio per unit time compared to a single slice excitation. It is also motion robust and enables the reconstruction of high-resolution black-blood T2-weighted images and T2 maps for the excited slices. METHODS: Hadamard encoded MB pulses were used in MB-DIR-RADFSE to simultaneously excite two slices. A principal component based iterative reconstruction was used to jointly reconstruct black-blood T2-weighted images and T2 maps. Phantom and in vivo experiments were performed to evaluate T2 mapping performance and results were compared to a T2-prepared balanced steady state free precession (bSSFP) method. The inter-segment variability of the T2 maps were assessed using data acquired on healthy subjects. A reproducibility study was performed to evaluate reproducibility of the proposed technique. RESULTS: Phantom experiments show that the T2 values estimated from MB-DIR-RADFSE are comparable to the spin-echo based reference, while T2-prepared bSSFP over-estimated T2 values. The relative contrast of the black-blood images from the multi-band scheme was comparable to those from a single slice acquisition. The myocardial segment analysis on 8 healthy subjects indicated a significant difference (p-value < 0.01) in the T2 estimates from the apical slice when compared to the mid-ventricular slice. The mean T2 estimate from 12 subjects obtained using T2-prepared bSSFP was significantly higher (p-value = 0.012) compared to MB-DIR-RADFSE, consistent with the phantom results. The Bland-Altman analysis showed excellent reproducibility between the MB-DIR-RADFSE measurements, with a mean T2 difference of 0.12 ms and coefficient of reproducibility of 2.07 in 15 clinical subjects. The utility of this technique is demonstrated in two subjects where the T2 maps show elevated values in regions of pathology. CONCLUSIONS: The use of multi-band pulses for excitation improves the slice efficiency of the double inversion fast spin-echo pulse sequence. The use of a radial trajectory and a joint reconstruction framework allows reconstruction of TE images and T2 maps for the excited slices.


Subject(s)
Heart Diseases/diagnostic imaging , Heart/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Case-Control Studies , Heart/physiopathology , Heart Diseases/physiopathology , Humans , Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging , Predictive Value of Tests , Prospective Studies , Reproducibility of Results , Ventricular Function, Left
12.
J Clin Densitom ; 21(4): 583-594, 2018.
Article in English | MEDLINE | ID: mdl-29705002

ABSTRACT

The ability to assess skeletal muscle adipose tissue is important given the negative clinical implications associated with greater fat infiltration of the muscle. Computed tomography and magnetic resonance imaging (MRI) are highly accurate for measuring appendicular soft tissue and muscle composition, but have limitations. Peripheral quantitative computed tomography (pQCT) is an alternative that investigators find valuable because of its low radiation, fast scan time, and comparatively lower costs. The present investigation sought to assess the accuracy of pQCT-derived estimates of total, subcutaneous, skeletal muscle, intermuscular, and calculated intramuscular adipose tissue areas, and muscle density in the midthigh of young girls using the gold standard, 3 T MRI, as the criterion. Cross-sectional data were analyzed for 26 healthy girls aged 9-12 years. Midthigh soft tissue composition was assessed by both pQCT and 3 T MRI. Mean tissue area for corresponding adipose compartments by pQCT and MRI was compared using t tests, regression analysis, and Bland-Altman plots. Muscle density was regressed on MRI skeletal muscle adipose tissue, intermuscular adipose tissue, and intramuscular adipose tissue, each expressed as a percentage of total muscle area. Correlations were high between MRI and pQCT for total adipose tissue (r2 = 0.98), subcutaneous adipose tissue (r2 = 0.95), skeletal muscle adipose tissue (r2 = 0.83), and intermuscular adipose tissue (r2 = 0.82), and pQCT muscle density correlated well with both MRI skeletal muscle adipose tissue (r2 = 0.70) and MRI intermuscular adipose tissue (r2 = 0.70). There was a slight, but statistically significant underestimation by pQCT for total and subcutaneous adipose tissue, whereas no significant difference was observed for skeletal muscle adipose tissue. Both pQCT-estimated intramuscular adipose tissue and muscle density were weakly correlated with MRI-intramuscular adipose tissue. We conclude that pQCT is a valid measurement technique for estimating all adipose subcompartments, except for intramuscular adipose tissue, for the midthigh region in young/adolescent girls.


Subject(s)
Adipose Tissue/diagnostic imaging , Magnetic Resonance Imaging/methods , Muscle, Skeletal/diagnostic imaging , Thigh/diagnostic imaging , Tomography, X-Ray Computed/methods , Child , Female , Humans , Overweight/diagnostic imaging , Pediatric Obesity/diagnostic imaging , Subcutaneous Fat/diagnostic imaging
13.
J Magn Reson Imaging ; 48(4): 971-981, 2018 10.
Article in English | MEDLINE | ID: mdl-29630755

ABSTRACT

BACKGROUND: Increased breast density is a significant independent risk factor for breast cancer, and recent studies show that this risk is modifiable. Hence, breast density measures sensitive to small changes are desired. PURPOSE: Utilizing fat-water decomposition MRI, we propose an automated, reproducible breast density measurement, which is nonionizing and directly comparable to mammographic density (MD). STUDY TYPE: Retrospective study. POPULATION: The study included two sample sets of breast cancer patients enrolled in a clinical trial, for concordance analysis with MD (40 patients) and reproducibility analysis (10 patients). FIELD STRENGTH/SEQUENCE: The majority of MRI scans (59 scans) were performed with a 1.5T GE Signa scanner using radial IDEAL-GRASE sequence, while the remaining (seven scans) were performed with a 3T Siemens Skyra using 3D Cartesian 6-echo GRE sequence with a similar fat-water separation technique. ASSESSMENT: After automated breast segmentation, breast density was calculated using FraGW, a new measure developed to reliably reflect the amount of fibroglandular tissue and total water content in the entire breast. Based on its concordance with MD, FraGW was calibrated to MR-based breast density (MRD) to be comparable to MD. A previous breast density measurement, Fra80-the ratio of breast voxels with <80% fat fraction-was also calculated for comparison with FraGW. STATISTICAL TESTS: Pearson correlation was performed between MD (reference standard) and FraGW (and Fra80). Test-retest reproducibility of MRD was evaluated using the difference between test-retest measures (Δ1-2 ) and intraclass correlation coefficient (ICC). RESULTS: Both FraGW and Fra80 were strongly correlated with MD (Pearson ρ: 0.96 vs. 0.90, both P < 0.0001). MRD converted from FraGW showed higher test-retest reproducibility (Δ1-2 variation: 1.1% ± 1.2%; ICC: 0.99) compared to MD itself (literature intrareader ICC ≤0.96) and Fra80. DATA CONCLUSION: The proposed MRD is directly comparable with MD and highly reproducible, which enables the early detection of small breast density changes and treatment response. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;48:971-981.


Subject(s)
Breast Density , Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Magnetic Resonance Imaging , Radiation, Ionizing , Adipose Tissue/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted , Mammography , Pattern Recognition, Automated , Reproducibility of Results , Retrospective Studies , Risk Factors , Tamoxifen/therapeutic use , Water
14.
Comput Med Imaging Graph ; 62: 15-25, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28886885

ABSTRACT

The four chamber plane is currently underutilized in the right ventricular segmentation community. Four chamber information can be useful to determine ventricular short axis stacks and provide a rough estimate of the right ventricle in short axis stacks. In this study, we develop and test a semi-automated technique for segmenting the right ventricle in four chamber cine cardiac magnetic resonance images. The three techniques that use minimum cost path algorithms were used. The algorithms are: Dijkstra's shortest path algorithm (Dijkstra), an A* algorithm that uses length, curvature and torsion into an active contour model (ALCT), and a variation of polar dynamic programming (PDP). The techniques are evaluated against the expert traces using 175 cardiac images from 7 patients. The evaluation first looks at mutual overlap metrics and then focuses on clinical measures such as fractional area change (FAC). The mean mutual overlap between the physician's traces ranged from 0.85 to 0.88. Using as reference physician 1's landmarks and traces (i.e., comparing the traces from physician 1 to the semi-automated segmentation using physician 1's landmarks), the PDP algorithm has a mean mutual overlap of 0.8970 compared to 0.8912 for ALCT and 0.8879 for Dijkstra. The mean mutual overlap between the BP regions generated by physician 1 and physician 2 landmarks are 0.9674, 0.9605 and 0.9531 for PDP, ALCT and Dijkstra, respectively. The FAC correlation coefficient between the physician's traces ranged from 0.73 to 0.93.


Subject(s)
Heart Ventricles/physiopathology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine , Algorithms , Humans
15.
J Magn Reson Imaging ; 46(1): 303-311, 2017 07.
Article in English | MEDLINE | ID: mdl-28176396

ABSTRACT

PURPOSE: To develop a novel multiresolution MRI methodology for accurate estimation of glomerular filtration rate (GFR) in vivo. MATERIALS AND METHODS: A three-dimensional golden-angle radial stack-of-stars (SoS) trajectory was used for data acquisition on a 3 Tesla MRI scanner. Multiresolution reconstruction and analysis was performed using arterial input function reconstructed at 1-s. temporal resolution and renal dynamic data reconstructed using compressed sensing (CS) with 4-s temporal resolution. The method was first validated using simulations and the clinical utility of the technique was evaluated by comparing the GFR estimates from the proposed method to the estimated GFR (eGFR) obtained from serum creatinine for 10 subjects. RESULTS: The 4-s temporal resolution CS images minimized streaking artifacts and noise while the 1-s temporal resolution AIF minimized errors in GFR estimates. A paired t-test showed that there was no statistically significant difference between MRI based total GFR values and serum creatinine based eGFR estimates (P = 0.92). CONCLUSION: We have demonstrated the feasibility of multiresolution MRI using a golden angle radial stack-of-stars scheme to accurately estimate GFR as well as produce diagnostic quality dynamic images in vivo. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 3 J. MAGN. RESON. IMAGING 2017;46:303-311.


Subject(s)
Data Compression/methods , Glomerular Filtration Rate , Kidney Function Tests/methods , Kidney/diagnostic imaging , Kidney/physiology , Magnetic Resonance Imaging/methods , Signal Processing, Computer-Assisted , Algorithms , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Sensitivity and Specificity , Urography/methods
16.
IEEE Trans Image Process ; 25(12): 5857-5866, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27723594

ABSTRACT

When using polar dynamic programming (PDP) for image segmentation, the object size is one of the main features used. This is because if size is left unconstrained the final segmentation may include high-gradient regions that are not associated with the object. In this paper, we propose a new feature, polar variance, which allows the algorithm to segment the objects of different sizes without the need for training data. The polar variance is the variance in a polar region between a user-selected origin and a pixel we want to analyze. We also incorporate a new technique that allows PDP to segment complex shapes by finding low-gradient regions and growing them. The experimental analysis consisted on comparing our technique with different active contour segmentation techniques on a series of tests. The tests consisted on robustness to additive Gaussian noise, segmentation accuracy with different grayscale images and finally robustness to algorithm-specific parameters. Experimental results show that our technique performs favorably when compared with other segmentation techniques.

17.
J Med Imaging (Bellingham) ; 3(3): 035502, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27446971

ABSTRACT

Chronic liver disease is a worldwide health problem, and hepatic fibrosis (HF) is one of the hallmarks of the disease. The current reference standard for diagnosing HF is biopsy followed by pathologist examination; however, this is limited by sampling error and carries a risk of complications. Pathology diagnosis of HF is based on textural change in the liver as a lobular collagen network that develops within portal triads. The scale of collagen lobules is characteristically in the order of 1 to 5 mm, which approximates the resolution limit of in vivo gadolinium-enhanced magnetic resonance imaging in the delayed phase. We use MRI of formalin-fixed human ex vivo liver samples as phantoms that mimic the textural contrast of in vivo Gd-MRI. We have developed a local texture analysis that is applied to phantom images, and the results are used to train model observers to detect HF. The performance of the observer is assessed with the area-under-the-receiver-operator-characteristic curve (AUROC) as the figure-of-merit. To optimize the MRI pulse sequence, phantoms were scanned with multiple times at a range of flip angles. The flip angle that was associated with the highest AUROC was chosen as optimal for the task of detecting HF.

18.
Magn Reson Med ; 75(6): 2295-302, 2016 06.
Article in English | MEDLINE | ID: mdl-26140699

ABSTRACT

PURPOSE: Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack-of-stars gradient echo acquisition and compressed sensing reconstruction. METHODS: A technique for dynamic three-dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data. RESULTS: Dynamic three-dimensional images can be captured at sub-150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of 4.6×4.6×10 mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements. CONCLUSION: Dynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three-dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295-2302, 2016. © 2015 Wiley Periodicals, Inc.


Subject(s)
Exhalation/physiology , Imaging, Three-Dimensional/methods , Lung/diagnostic imaging , Magnetic Resonance Imaging/methods , Spirometry/methods , Humans , Lung/physiology
19.
J Cardiovasc Magn Reson ; 17: 24, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25889928

ABSTRACT

BACKGROUND: The abnormal signal intensity in cardiac T2-weighted images is associated with various pathologies including myocardial edema. However, the assessment of pathologies based on signal intensity is affected by the acquisition parameters and the sensitivities of the receiver coils. T2 mapping has been proposed to overcome limitations of T2-weighted imaging, but most methods are limited in spatial and/or temporal resolution. Here we present and evaluate a double inversion recovery radial fast spin-echo (DIR-RADFSE) technique that yields data with high spatiotemporal resolution for cardiac T2 mapping. METHODS: DIR-RADFSE data were collected at 1.5 T on phantoms and subjects with echo train length (ETL) = 16, receiver bandwidth (BW) = ±32 kHz, TR = 1RR, matrix size = 256 × 256. Since only 16 views per echo time (TE) are collected, two algorithms designed to reconstruct highly undersampled radial data were used to generate images for 16 time points: the Echo-Sharing (ES) and the CUrve Reconstruction via pca-based Linearization with Indirect Echo compensation (CURLIE) algorithm. T2 maps were generated via least-squares fitting or the Slice-resolved Extended Phase Graph (SEPG) model fitting. The CURLIE-SEPG algorithm accounts for the effect of indirect echoes. The algorithms were compared based on reproducibility, using Bland-Altman analysis on data from 7 healthy volunteers, and T2 accuracy (against a single-echo spin-echo technique) using phantoms. RESULTS: Both reconstruction algorithms generated in vivo images with high spatiotemporal resolution and showed good reproducibility. Mean T2 difference between repeated measures and the coefficient of repeatability were 0.58 ms and 2.97 for ES and 0.09 ms and 4.85 for CURLIE-SEPG. In vivo T2 estimates from ES were higher than those from CURLIE-SEPG. In phantoms, CURLIE-SEPG yielded more accurate T2s compared to reference values (error was 7.5-13.9% for ES and 0.6-2.1% for CURLIE-SEPG), consistent with the fact that CURLIE-SEPG compensates for the effects of indirect echoes. The potential of T2 mapping with CURLIE-SEPG is demonstrated in two subjects with known heart disease. Elevated T2 values were observed in areas of suspected pathology. CONCLUSIONS: DIR-RADFSE yielded TE images with high spatiotemporal resolution. Two algorithms for generating T2 maps from highly undersampled data were evaluated in terms of accuracy and reproducibility. Results showed that CURLIE-SEPG yields T2 estimates that are reproducible and more accurate than ES.


Subject(s)
Heart Diseases/diagnosis , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Myocardium/pathology , Algorithms , Heart Diseases/pathology , Humans , Least-Squares Analysis , Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging , Predictive Value of Tests , Reproducibility of Results
20.
Acad Radiol ; 22(2): 139-48, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25572926

ABSTRACT

RATIONALE AND OBJECTIVES: To develop and test an algorithm that outlines the breast boundaries using information from fat and water magnetic resonance images. MATERIALS AND METHODS: Three algorithms were implemented and tested using registered fat and water magnetic resonance images. Two of the segmentation algorithms are simple extensions of the techniques used for contrast-enhanced images: one algorithm uses clustering and local gradient (CLG) analysis and the other algorithm uses a Hessian-based sheetness filter (HSF). The third segmentation algorithm uses k-means++ and dynamic programming (KDP) for finding the breast pixels. All three algorithms separate the left and right breasts using either a fixed region or a morphological method. The performance is quantified using a mutual overlap (Dice) metric and a pectoral muscle boundary error. The algorithms are evaluated against three manual tracers using 266 breast images from 14 female subjects. RESULTS: The KDP algorithm has a mean overlap percentage improvement that is statistically significant relative to the HSF and CLG algorithms. When using a fixed region to remove the tissue between breasts with tracer 1 as a reference, the KDP algorithm has a mean overlap of 0.922 compared to 0.864 (P < .01) for HSF and 0.843 (P < .01) for CLG. The performance of KDP is very similar to tracers 2 (0.926 overlap) and 3 (0.929 overlap). The performance analysis in terms of pectoral muscle boundary error showed that the fraction of the muscle boundary within three pixels of reference tracer 1 is 0.87 using KDP compared to 0.578 for HSF and 0.617 for CLG. Our results show that the performance of the KDP algorithm is independent of breast density. CONCLUSIONS: We developed a new automated segmentation algorithm (KDP) to isolate breast tissue from magnetic resonance fat and water images. KDP outperforms the other techniques that focus on local analysis (CLG and HSF) and yields a performance similar to human tracers.


Subject(s)
Adipose Tissue/pathology , Body Water , Breast Neoplasms/pathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Subtraction Technique , Algorithms , Breast , Female , Humans , Image Enhancement/methods , Pattern Recognition, Automated/methods , Programming, Linear , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...