Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res Ther ; 15(1): 125, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679715

ABSTRACT

BACKGROUND: Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for leukemia and a range of non-malignant disorders. The success of the therapy is hampered by occurrence of acute graft-versus-host disease (aGvHD); an inflammatory response damaging recipient organs, with gut, liver, and skin being the most susceptible. Intestinal GvHD injury is often a life-threatening complication in patients unresponsive to steroid treatment. Allogeneic mesenchymal stromal/stem cell (MSC) infusions are a promising potential treatment for steroid-resistant aGvHD. Data from our institution and others demonstrate rescue of approximately 40-50% of aGvHD patients with MSCs in Phase I, II studies and minor side effects. Although promising, better understanding of MSC mode of action and patient response to MSC-based therapy is essential to improve this lifesaving treatment. METHODS: Single cell human small intestine organoids were embedded in Matrigel, grown for 5 days and treated with busulfan for 48 h. Organoids damaged by treatment with busulfan or control organoids were co-cultured with 5000, 10,000, and 50,000 MSCs for 24 h, 48 h or 7 days and the analyses such as surface area determination, proliferation and apoptosis assessment, RNA sequencing and proteomics were performed. RESULTS: Here, we developed a 3D co-culture model of human small intestinal organoids and MSCs, which allows to study the regenerative effects of MSCs on intestinal epithelium in a more physiologically relevant setting than existing in vitro systems. Using this model we mimicked chemotherapy-mediated damage of the intestinal epithelium. The treatment with busulfan, the chemotherapeutic commonly used as conditioning regiment before the HSCT, affected pathways regulating epithelial to mesenchymal transition, proliferation, and apoptosis in small intestinal organoids, as shown by transcriptomic and proteomic analysis. The co-culture of busulfan-treated intestinal organoids with MSCs reversed the effects of busulfan on the transcriptome and proteome of intestinal epithelium, which we also confirmed by functional evaluation of proliferation and apoptosis. CONCLUSIONS: Collectively, we demonstrate that our in vitro co-culture system is a new valuable tool to facilitate the investigation of the molecular mechanisms behind the therapeutic effects of MSCs on damaged intestinal epithelium. This could benefit further optimization of the use of MSCs in HSCT patients.


Subject(s)
Intestinal Mucosa , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Regeneration/drug effects , Organoids/metabolism , Coculture Techniques , Graft vs Host Disease/therapy , Mesenchymal Stem Cell Transplantation/methods , Busulfan/pharmacology , Cell Proliferation/drug effects , Apoptosis/drug effects
2.
Blood Adv ; 3(19): 2870-2882, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31585951

ABSTRACT

γδT cells are key players in cancer immune surveillance because of their ability to recognize malignant transformed cells, which makes them promising therapeutic tools in the treatment of cancer. However, the biological mechanisms of how γδT-cell receptors (TCRs) interact with their ligands are poorly understood. Within this context, we describe the novel allo-HLA-restricted and CD8α-dependent Vγ5Vδ1TCR. In contrast to the previous assumption of the general allo-HLA reactivity of a minor fraction of γδTCRs, we show that classic anti-HLA-directed, γδTCR-mediated reactivity can selectively act on hematological and solid tumor cells, while not harming healthy tissues in vitro and in vivo. We identified the molecular interface with proximity to the peptide-binding groove of HLA-A*24:02 as the essential determinant for recognition and describe the critical role of CD8 as a coreceptor. We conclude that alloreactive γδT-cell repertoires provide therapeutic opportunities, either within the context of haplotransplantation or as individual γδTCRs for genetic engineering of tumor-reactive T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Receptors, Antigen, T-Cell/genetics , Animals , Humans , Mice
3.
Anal Chem ; 72(22): 5718-24, 2000 Nov 15.
Article in English | MEDLINE | ID: mdl-11101253

ABSTRACT

The compatibility of ion-pair reversed-phase column liquid chromatography and surface-enhanced resonance Raman spectroscopy (SERRS) for separation and identification of anionic dyes has been investigated, with emphasis on the at-line coupling via a thin-layer chromatography (TLC) plate. SERR spectra using silver sols were recorded both for aqueous solutions and for samples deposited on aluminum oxide and silica TLC plates at 514.5- and 457.9-nm laser excitation. For some dyes, the shorter wavelength was needed to diminish the fluorescence background. For aqueous solutions and for samples deposited on aluminum oxide, clear SERR spectra were obtained upon addition of poly(L-lysine); for the silica plates, the addition of nitric acid was required. Upon drying the plates, the SERRS signals decreased in intensity; simply adding a drop of water could largely restore them. At-line coupling of LC and SERRS was successfully achieved when using silica, but not aluminum oxide, plates. The application of a gradient, a high water content, and the presence of ion-pair reagents needed for the separation did not adversely affect the deposition and the recording of SERR spectra. The identification limits were 10-20 ng of deposited material, depending on the dye selected, which corresponded to injected concentrations of 5-10 microg mL(-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...