Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Macromolecules ; 57(7): 3066-3080, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38616808

ABSTRACT

We report the results of a study focusing on the influence of crystallization kinetics and flow behavior on structural inhomogeneities in 3D-printed parts made from polyamide 12 (PA12) and poly(lactic acid) (PLA) by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), fast scanning calorimetry (FSC), and wide-angle X-ray diffraction (WAXD). Temperature-dependent WAXD measurements on the neat PLA filament reveal that PLA forms a single orthorhombic α phase during slow cooling and subsequent 2nd heating. The PA12 filament shows a well pronounced polymorphism with a reversible solid-solid phase transition between the (pseudo)hexagonal γ phase near room temperature and the monoclinic α' phase above the Brill transition temperature TB = 140 °C. The influence of the print bed temperature Tb on structure formation, polymorphic state, and degree of crystallinity χc of the 3D-printed parts is investigated by height and depth-dependent WAXD scans and compared with that of 3D-printed single layers, used as a reference. It is found that the heat transferred from successive layers has a strong influence on the polymorphic state of PA12 since a superimposed mixture of γ and α phases is present in the 3D-printed parts. In the case of PLA, a single α phase is formed. The print bed temperature has, in comparison to PA12, a major influence on the degree of crystallinity χc and thus the homogeneity of the 3D-printed parts, especially close to the print bed. By comparing the obtained results from WAXD, DMA, DSC, and FSC measurements with relevant printing times, guidelines for 3D-printed parts with a homogeneous structure are derived.

2.
Polymers (Basel) ; 16(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38475278

ABSTRACT

Lightweight component design is effectively achievable through sandwich structures; many past research studies in the aerospace and racing sectors (since the 1920s) have proven it. To extend their application into the automotive and other transport industries, manufacturing cycle times must be reduced. This can be achieved by sandwich materials made of continuous fibre-reinforced thermoplastic (CFRTP) cover layers and thermoplastic honeycomb cores. To widen the application of flat thermoplastic-based sandwich panels into complex parts, a novel forming technology was developed by the Fraunhofer Institute of Microstructure of Materials and Systems (IMWS). Manufacturing defects like wrinkling and surface waviness should be minimised to achieve high reproducibility of the sandwich components. Studying different manufacturing parameters and their influence on the final part is complex and challenging to analyse through experiments, as it is time-consuming. Therefore, a finite element (FE) modelling approach is implemented to reduce such efforts. Initially, a thermoforming model is developed and validated with experimental results to check its reliability. Further, different simulations are performed to optimise the novel sandwich-forming process. In this study, a thermoplastic sandwich made of polypropylene (PP) honeycomb core and polypropylene glass fibre (PP/GF) cross-ply as cover layers was used, and its numerical model was executed in LS-DYNA software release R11.2.1.

3.
J Mech Behav Biomed Mater ; 137: 105546, 2023 01.
Article in English | MEDLINE | ID: mdl-36375274

ABSTRACT

Young's modulus of α'- and α-crystals of poly (l-lactic acid) (PLLA), more precisely, of aggregates of isotropically arranged lamellae, has been estimated based on dynamic-mechanical analysis of sets of isotropic film samples containing largely different though well-defined amounts of crystals. Evaluation of the modulus of elasticity of these film samples yielded the dependence of Young's modulus as a function of the enthalpy-based crystallinity, increasing with the crystal fraction in the assessed range, from zero to about 75% crystallinity. Extrapolation towards 100% crystallinity suggests values of Young's modulus of around 3.7 and 4.6 GPa for isotropic aggregates of α'- and α-crystals, respectively, being only slightly higher than the modulus of the unaged glassy amorphous phase of 3.0 GPa. Noting the inherent anisotropy of the crystal modulus, suggested in the literature, the average modulus determined in this work seems to be controlled by weaker interchain secondary bonding but not the modulus in chain direction. Great effort has been undertaken to minimize errors by keeping the lamellar thickness in samples of different crystallinity constant, and by providing evidence for independence of the moduli on the spherulitic superstructure.


Subject(s)
Lactic Acid , Elastic Modulus , Elasticity , Anisotropy , Thermodynamics , Lactic Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...