Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(3)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36978714

ABSTRACT

Dental pulp regeneration strategies frequently result in hard tissue formation and pulp obliteration. The aim of this study was to investigate whether dental pulp stem cells (DPSCs) can be directed toward soft tissue differentiation by extracellular elasticity. STRO-1-positive human dental pulp cells were magnetically enriched and cultured on substrates with elasticities of 1.5, 15, and 28 kPa. The morphology of DPSCs was assessed visually. Proteins relevant in mechanobiology ACTB, ITGB1, FAK, p-FAK, TALIN, VINCULIN, PAXILLIN, ERK 1/2, and p-ERK 1/2 were detected by immunofluorescence imaging. Transcription of the pulp marker genes BMP2, BMP4, MMP2, MMP3, MMP13, FN1, and IGF2 as well as the cytokines ANGPT1, VEGF, CCL2, TGFB1, IL2, ANG, and CSF1 was determined using qPCR. A low stiffness, i.e., 1.5 kPa, resulted in a soft tissue-like phenotype and gene expression, whereas DPSCs on 28 kPa substrates exhibited a differentiation signature resembling hard tissues with a low cytokine expression. Conversely, the highest cytokine expression was observed in cells cultured on intermediate elasticity, i.e., 15 kPa, substrates possibly allowing the cells to act as "trophic mediators". Our observations highlight the impact of biophysical cues for DPSC fate and enable the design of scaffold materials for clinical pulp regeneration that prevent hard tissue formation.

2.
Antibiotics (Basel) ; 12(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36671205

ABSTRACT

This study aimed to evaluate the in vivo initial microbial adhesion of oral microorganisms on the biomaterial Biodentine compared to MTA and AH Plus. Cylindrical samples of the materials were prepared, and dentin slabs served as a control. An individual intraoral lower jaw splint served as a carrier for the samples and was worn by six volunteers. The specimens were worn for 120 min. Adherent bacteria were quantified by determining the colony-forming units (CFUs), while the visualization and quantification of total adherent microorganisms were facilitated by using DAPI and live/dead staining combined with fluorescence microscopy. Bovine dentin had a significantly higher number of aerobic CFUs compared to Biodentine (p = 0.017) and MTA (p = 0.013). The lowest amounts of DAPI-stained adherent microorganisms were quantified for Biodentine (15% ± 9%) and the control (18% ± 9%), while MTA showed the highest counts of initially adherent microorganisms (38% ± 10%). Significant differences were found for MTA and Biodentine (p = 0.004) as well as for MTA and the control (p = 0.021) and for AH Plus and the control (p = 0.025). Biodentine inhibited microbial adherence, thereby yielding an antimicrobial effectivity similar to that of MTA.

SELECTION OF CITATIONS
SEARCH DETAIL
...