Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37177327

ABSTRACT

Nowadays, usable plastic materials with defined properties are created by blending additives into the base polymer. This is the main task of compounding on co-rotating twin-screw extruders. The thermal and mechanical stress occurring in the process leads to a mostly irreversible damage to the material. Consequently, the properties of the polymer melt and the subsequent product are affected. The material degradation of polypropylene (PP) on a 28 mm twin-screw extruder has already been studied and modeled at Kunststofftechnik Paderborn. In this work, the transferability of the previous results to other machine sizes and polypropylene compounds were investigated experimentally. Therefore, pure polypropylene was processed with screw diameters of 25 mm and 45 mm. Furthermore, polypropylene compounds with titanium dioxide as well as carbon fibers were considered on a 28 mm extruder. In the course of the evaluation of the pure polypropylene, the melt flow rates of the samples were measured and the molar masses were calculated on this basis. The compounds were analyzed by gel permeation chromatography. As in the previous investigations, high rotational speeds, low throughputs and high melt temperatures lead to a higher material degradation. In addition, it is illustrated that the previously developed model for the calculation of material degradation is generally able to predict the degradation even for different machine sizes by adjusting the process coefficients. In summary, this article shows that compounders can use the recommendations for action and the calculation model for the material degradation of polypropylene, irrespective of the machine size, to design processes that are gentle on the material.

2.
Polymers (Basel) ; 15(4)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36850316

ABSTRACT

In the context of plastics recycling, plastics are processed several times. With each new melting and extrusion the plastic is damaged, which can have a negative effect on product properties. To counteract material damage, special additives such as chain extenders can be used, which are intended to lead to post-polymerization during processing. A linear chain extension is important here, as branching and crosslinking can lead to uncontrolled changes in the plastic's properties. To investigate the suitability of specialized linear chain extenders for polyamides, a polyamide-6 was processed several times and the molar mass distribution was evaluated after each extrusion cycle. Three series of tests were carried out. First, the plastic was regranulated five times without additives and twice with different concentrations of chain extenders on a twin-screw extruder. The results of the study show that not only can molar mass degradation be prevented with the appropriate additive, it is even possible to achieve a material buildup during processing. In our experiments, the polydispersity of the molar mass distribution remained nearly identical despite multiple extrusions. Thus, reactive extrusion makes it possible for the corresponding plastics to be processed several times without the molar mass decreasing. If a sufficiently pure material flow can be ensured during recycling, the number of possible reprocessings of the plastic can be significantly increased without the need to add virgin material.

SELECTION OF CITATIONS
SEARCH DETAIL
...