Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 15(1): 476, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36539831

ABSTRACT

BACKGROUND: Insecticide resistance remains a major public health problem. Resistance surveillance is critical for effective vector control and resistance management planning. Commonly used insecticide susceptibility bioassays for mosquitoes are the CDC bottle bioassay and the WHO tube test. Less commonly used in the field but considered the gold standard for assessing insecticide susceptibility in the development of novel insecticides is the topical application bioassay. Each of these bioassays has critical differences in how they assess insecticide susceptibility that impacts their ability to differentiate between resistant and susceptible populations or determine different levels of resistance intensity. METHODS: We compared the CDC bottle bioassay, the WHO tube test, and the topical application bioassay in establishing the dose-response against deltamethrin (DM) using the DM-resistant Aedes aegypti strain MC1. Mosquitoes were exposed to a range of insecticide concentrations to establish a dose-response curve and assess variation around model predictions. In addition, 10 replicates of 20-25 mosquitoes were exposed to a fixed dose with intermediate mortality to assess the degree of variation in mortality. RESULTS: The topical application bioassay exhibited the lowest amount of variation in the dose-response data, followed by the WHO tube test. The CDC bottle bioassay had the highest level of variation. In the fixed-dose experiment, a higher variance was similarly found for the CDC bottle bioassay compared with the WHO tube test and topical application bioassay. CONCLUSION: These data suggest that the CDC bottle bioassay has the lowest power and the topical application bioassay the highest power to differentiate between resistant and susceptible populations and assess changes over time and between populations. This observation has significant implications for the interpretation of surveillance results from different assays. Ultimately, it will be important to discuss optimal insecticide resistance surveillance tools in terms of the surveillance objective, practicality in the field, and accuracy of the tool to reach that objective.


Subject(s)
Aedes , Insecticides , Pyrethrins , Animals , United States , Insecticides/pharmacology , Mosquito Vectors , Insecticide Resistance , Biological Assay/methods , Centers for Disease Control and Prevention, U.S. , World Health Organization , Pyrethrins/pharmacology
2.
J Vis Exp ; (179)2022 01 19.
Article in English | MEDLINE | ID: mdl-35129177

ABSTRACT

The continued use of insecticides for public health and agriculture has led to widespread insecticide resistance and hampering of control methods. Insecticide resistance surveillance of mosquito populations is typically done through Centers for Disease Control and Prevention (CDC) bottle bioassays or World Health Organization (WHO) tube tests. However, these methods can result in a high degree of variability in mortality data due to variable insecticide contact with the insect, the relatively small numbers of organisms tested, extensive variation in mass between populations, and constantly changing environmental conditions, leading to variable outcomes. This paper presents the topical application bioassay, adapted as a high-throughput phenotypic bioassay for both mosquitoes and fruit flies, to test large numbers of insects along a range of insecticide concentrations. This assay 1) ensures consistent treatment and insecticide contact with every organism, 2) produces highly specific dose-response curves that account for differences in average mass between strains and sexes (which is particularly important for field-collected organisms), and 3) allows for the calculation of statistically rigorous median lethal doses (LD50), which are necessary for resistance ratio comparisons-an alternative surveillance approach from diagnostic dose mortality, which is also used for larvicide resistance surveillance. This assay will be a complementary tool for accurately phenotyping mosquito populations and, as illustrated using fruit flies, is easily adaptable for use with other insects. We argue that this assay will help fill the gap between genotypic and phenotypic insecticide resistance in multiple insect species.


Subject(s)
Anopheles , Insecticides , Animals , Biological Assay , Insecticide Resistance , Insecticides/pharmacology , Mosquito Control
SELECTION OF CITATIONS
SEARCH DETAIL
...