Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37895858

ABSTRACT

Balancing the therapeutic advantages of a medicine with its possible risks and side effects is an important part of medical practice and drug regulation. When a drug is designed to treat a particular disease or medical condition ends up causing additional risks or side effects that lead to the development of other serious health problems, it can have detrimental consequences for patients. This article explores the correlation between persistent proton pump inhibitor (PPI) use and hypertension, a common cardiovascular ailment. While PPIs are beneficial in treating various gastrointestinal problems, their availability without a prescription has resulted in self-medication and long-term use without medical monitoring. Recent findings have revealed a link between long-term PPI usage and increased cardiovascular risks, particularly hypertension. This study investigates the intricate mechanisms underlying PPI's effects, focusing on potential pathways contributing to hypertension, such as endothelial dysfunction, disruption of nitric oxide bioavailability, vitamin B deficiency, hypocalcemia, and hypomagnesemia. The discussion explains how long-term PPI use can disrupt normal endothelial function, vascular control, and mineral balance, eventually leading to hypertension. The article emphasizes the significance of using PPIs with caution and ongoing research to better understand the implications of these medications on cardiovascular health.

2.
Mar Drugs ; 21(8)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37623723

ABSTRACT

Marine-derived fungi are renowned as a source of astonishingly significant and synthetically appealing metabolites that are proven as new lead chemicals for chemical, pharmaceutical, and agricultural fields. Aspergillus sydowii is a saprotrophic, ubiquitous, and halophilic fungus that is commonly found in different marine ecosystems. This fungus can cause aspergillosis in sea fan corals leading to sea fan mortality with subsequent changes in coral community structure. Interestingly, A. sydowi is a prolific source of distinct and structurally varied metabolites such as alkaloids, xanthones, terpenes, anthraquinones, sterols, diphenyl ethers, pyrones, cyclopentenones, and polyketides with a range of bioactivities. A. sydowii has capacity to produce various enzymes with marked industrial and biotechnological potential, including α-amylases, lipases, xylanases, cellulases, keratinases, and tannases. Also, this fungus has the capacity for bioremediation as well as the biocatalysis of various chemical reactions. The current work aimed at focusing on the bright side of this fungus. In this review, published studies on isolated metabolites from A. sydowii, including their structures, biological functions, and biosynthesis, as well as the biotechnological and industrial significance of this fungus, were highlighted. More than 245 compounds were described in the current review with 134 references published within the period from 1975 to June 2023.


Subject(s)
Anthozoa , Ecosystem , Animals , Aspergillus , Anthraquinones
3.
Molecules ; 28(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37630254

ABSTRACT

Oxidative stress plays a significant role in the development of cancer. Inhibiting the protein-protein interaction (PPI) between Keap1 and Nrf2 offers a promising strategy to activate the Nrf2 antioxidant pathway, which is normally suppressed by the binding of Keap1 to Nrf2. This study aimed to identify natural compounds capable of targeting the kelch domain of KEAP1 using structure-based drug design methods. A pharmacophore model was constructed based on the KEAP1-inhibitor complex, leading to the selection of 6178 compounds that matched the model. Subsequently, docking and MM/GBSA analyses were conducted, resulting in the identification of 10 compounds with superior binding energies compared to the reference compound. From these, three compounds (ZINC000002123788, ZINC000002111341, and ZINC000002125904) were chosen for further investigation. Ligand-residue interaction analysis revealed specific interactions between these compounds and key residues, indicating their stability within the binding site. ADMET analysis confirmed that the selected compounds possessed desirable drug-like properties. Furthermore, molecular dynamics simulations were performed, demonstrating the stability of the ligand-protein complexes over a 100 ns duration. These findings underscore the potential of the selected natural compounds as agents targeting KEAP1 and provide valuable insights for future experimental studies.


Subject(s)
Biological Products , Neoplasms , Early Detection of Cancer , Molecular Docking Simulation , Biological Products/pharmacology , Molecular Dynamics Simulation , NF-E2-Related Factor 2 , Kelch-Like ECH-Associated Protein 1 , Ligands , Pharmacophore , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...