Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 43(17): 1263-1273, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38433256

ABSTRACT

DNA double-strand breaks (DSBs) contribute to genome instability, a key feature of cancer. DSBs are mainly repaired by homologous recombination (HR) and non-homologous end-joining (NHEJ). We investigated the role of an isoform of the multifunctional cyclin-dependent kinase 9, CDK9-55, in DNA repair, by generating CDK9-55-knockout HeLa clones (through CRISPR-Cas9), which showed potential HR dysfunction. A phosphoproteomic screening in these clones treated with camptothecin revealed that CDC23 (cell division cycle 23), a component of the E3-ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome), is a new substrate of CDK9-55, with S588 being its putative phosphorylation site. Mutated non-phosphorylatable CDC23(S588A) affected the repair pathway choice by impairing HR and favouring error-prone NHEJ. This CDK9 role should be considered when designing CDK-inhibitor-based cancer therapies.

2.
Front Oncol ; 13: 1117262, 2023.
Article in English | MEDLINE | ID: mdl-37409248

ABSTRACT

Introduction: DNA double-strand breaks are the most toxic lesions repaired through the non-homologous and joining (NHEJ) or the homologous recombination (HR), which is dependent on the generation of single-strand tails, by the DNA end resection mechanism. The resolution of the HR intermediates leads to error-free repair (Gene Conversion) or the mutagenic pathways (Single Strand Annealing and Alternative End-Joining); the regulation of processes leading to the resolution of the HR intermediates is not fully understood. Methods: Here, we used a hydrophilic extract of a new tomato genotype (named DHO) in order to modulate the Camptothecin (CPT) DNA damage response. Results: We demonstrated increased phosphorylation of Replication Protein A 32 Serine 4/8 (RPA32 S4/8) protein in HeLa cells treated with the CPT in combination with DHO extract with respect to CPT alone. Moreover, we pointed out a change in HR intermediates resolution from Gene Conversion to Single Strand Annealing through the modified DNA repair protein RAD52 homolog (RAD52), DNA excision repair protein ERCC-1 (ERCC1) chromatin loading in response to DHO extract, and CPT co-treatment, with respect to the vehicle. Finally, we showed an increased sensitivity of HeLa cell lines to DHO extract and CPT co-treatment suggesting a possible mechanism for increasing the efficiency of cancer therapy. Discussion: We described the potential role of DHO extract in the modulation of DNA repair, in response to Camptothecin treatment (CPT), favoring an increased sensitivity of HeLa cell lines to topoisomerase inhibitor therapy.

3.
Bio Protoc ; 10(15): e3701, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-33659366

ABSTRACT

DNA double strand breaks (DSBs) are among the most toxic lesions affecting genome integrity. DSBs are mainly repaired through non-homologous end joining (NHEJ) and homologous recombination (HR). A crucial step of the HR process is the generation, through DNA end-resection, of a long 3' single-strand DNA stretch, necessary to prime DNA synthesis using a homologous region as a template, following DNA strand invasion. DNA end resection inhibits NHEJ and triggers homology-directed DSB repair, ultimately guaranteeing a faithful DNA repair. Established methods to evaluate the DNA end-resection process are the immunofluorescence analysis of the phospho-S4/8 RPA32 protein foci, a marker of DNA end-resection, or of the phospho-S4/8 RPA32 protein levels by Western blot. Recently, the Single Molecule Analysis of Resection Tracks (SMART) has been described as a reliable method to visualize, by immunofluorescence, the long 3' single-strand DNA tails generated upon cell treatment with a S-phase specific DNA damaging agent (such as camptothecin). Then, DNA tract lengths can be measured through an image analysis software (such as Photoshop), to evaluate the processivity of the DNA end-resection machinery. The preparation of DNA fibres is performed in non-denaturing conditions so that the immunofluorescence detects only the specific long 3' single-strand DNA tails, generated from DSB processing.

4.
Nucleic Acids Res ; 47(8): 4068-4085, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30799487

ABSTRACT

DNA double strand break (DSB) repair through homologous recombination (HR) is crucial to maintain genome stability. DSB resection generates a single strand DNA intermediate, which is crucial for the HR process. We used a synthetic DNA structure, mimicking a resection intermediate, as a bait to identify proteins involved in this process. Among these, LC/MS analysis identified the RNA binding protein, HNRNPD. We found that HNRNPD binds chromatin, although this binding occurred independently of DNA damage. However, upon damage, HNRNPD re-localized to γH2Ax foci and its silencing impaired CHK1 S345 phosphorylation and the DNA end resection process. Indeed, HNRNPD silencing reduced: the ssDNA fraction upon camptothecin treatment; AsiSI-induced DSB resection; and RPA32 S4/8 phosphorylation. CRISPR/Cas9-mediated HNRNPD knockout impaired in vitro DNA resection and sensitized cells to camptothecin and olaparib treatment. We found that HNRNPD interacts with the heterogeneous nuclear ribonucleoprotein SAF-A previously associated with DNA damage repair. HNRNPD depletion resulted in an increased amount of RNA:DNA hybrids upon DNA damage. Both the expression of RNase H1 and RNA pol II inhibition recovered the ability to phosphorylate RPA32 S4/8 in HNRNPD knockout cells upon DNA damage, suggesting that RNA:DNA hybrid resolution likely rescues the defective DNA damage response of HNRNPD-depleted cells.


Subject(s)
Chromatin/metabolism , Genome, Human , Heterogeneous-Nuclear Ribonucleoprotein D/genetics , Recombinational DNA Repair , Replication Protein A/genetics , Antineoplastic Agents/pharmacology , Camptothecin/pharmacology , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , Chromatin/drug effects , Chromatin/ultrastructure , DNA/drug effects , DNA Breaks, Double-Stranded/drug effects , DNA End-Joining Repair/drug effects , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Genomic Instability , HeLa Cells , Heterogeneous Nuclear Ribonucleoprotein D0 , Heterogeneous-Nuclear Ribonucleoprotein D/antagonists & inhibitors , Heterogeneous-Nuclear Ribonucleoprotein D/metabolism , Heterogeneous-Nuclear Ribonucleoprotein U/genetics , Heterogeneous-Nuclear Ribonucleoprotein U/metabolism , Histones/genetics , Histones/metabolism , Humans , Nucleic Acid Conformation , Nucleic Acid Hybridization/drug effects , Phosphorylation/drug effects , Phthalazines/pharmacology , Piperazines/pharmacology , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Recombinational DNA Repair/drug effects , Replication Protein A/metabolism , Ribonuclease H/genetics , Ribonuclease H/metabolism
5.
J Cell Physiol ; 233(5): 4338-4344, 2018 05.
Article in English | MEDLINE | ID: mdl-29150959

ABSTRACT

NONO is an RNA-binding protein involved in transcription, mRNA splicing, DNA repair, and checkpoint activation in response to UV radiation. NONO expression has been found altered in several tumor types, including prostate, colon, breast, melanoma, and in papillary renal carcinoma, in which an X chromosome inversion generates a NONO-TFE3 fusion protein. Upon such rearrangement, NONO loses its C-terminal domain. Through bioinformatics analysis, we identified a putative degron motif, known to be recognized by the Skp1-Cul1-F-box-protein (SCF) complex. Here, we evaluated how this domain could affect NONO protein biology. We showed that NONO interacts with the nuclear FBW7α isoform and its ubiquitination is regulated following modulation of the GSK3ß kinase. Mutation of T428A/T432A within the degron impaired polyubiquitination upon FBW7α and GSK3ß overexpression. Overall, our data suggest that NONO is likely subjected to proteasome-mediated degradation and add NONO to the list of proteins targeted by FBW7, which is itself often deregulated in cancer.


Subject(s)
F-Box-WD Repeat-Containing Protein 7/genetics , Glycogen Synthase Kinase 3 beta/genetics , Neoplasms/genetics , Nuclear Matrix-Associated Proteins/genetics , Octamer Transcription Factors/genetics , RNA-Binding Proteins/genetics , Cell Line, Tumor , Cell Nucleus/genetics , Chromosome Aberrations , DNA-Binding Proteins , Gene Expression Regulation, Neoplastic/genetics , Humans , Nucleotide Motifs/genetics , Phosphorylation , SKP Cullin F-Box Protein Ligases/genetics , Ubiquitination/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...