Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pest Manag Sci ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634563

ABSTRACT

BACKGROUND: Biocontrol agents (BCAs) are alternatives to synthetic fungicides with low risk to the environment and human health. Although several studies on the biocontrol of gray mold in vineyards have been performed, it is necessary to improve the usage of BCAs in fields conditions. Therefore, in the present study, BCAs were used both in calendar-based [based on four growth stages (GSs), i.e., flowering, pre-bunch closure, veraison, and before harvest] and predictive model-based strategies (only when Botrytis cinerea infection risk was predicted by the model). The BCAs applied during the seasons were selected considering the grapevine GSs. Treatments performed with BCAs were compared with synthetic fungicide treatments and an untreated control. The trials were conducted in three experimental vineyards with four epidemics. To evaluate the level of gray mold control of each treatment, disease severity was assessed at harvest and the presence of latent infection was evaluated. RESULTS: The integrative use of the predictive model and BCAs provided satisfactory levels of gray mold control, with gray mold severity levels significantly lower (P < 0.001) than those of the untreated control, which had severity values (< 7%) similar to those observed with synthetic fungicides following both calendar and model-based strategies. CONCLUSIONS: The integrative use of the predictive model and BCAs represents a valid alternative to conventional methods of gray mold control in vineyards, with more than 75% reduction in fungicide usage. © 2024 Society of Chemical Industry.

2.
Plant Dis ; 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37874281

ABSTRACT

Grapevine trunk diseases (GTDs) are among the most devastating grapevine diseases globally. GTDs are caused by multiple fungi from various taxa, which release spores into the vineyard and infect wood tissue, mainly through wounds caused by viticultural operations. The timing of operations to avoid infection is critical concerning the periodicity of GTD spores in vineyards, and many studies have been conducted in different grape-growing areas worldwide. However, these studies provide conflicting and fragmented information. To synthesize current knowledge, we performed a systematic literature review, extracted quantitative data from published papers, and used these data to identify trends and knowledge gaps to be addressed in future studies. Our database included 26 papers covering 247 studies and 3,529 spore sampling records concerning a total of 29 fungal taxa responsible for Botryosphaeria dieback (BD), Esca complex (EC), and Eutypa dieback (ED). We found a clear seasonality in the presence and abundance of BD spores, with a peak from fall to spring, more in the northern than in the southern hemisphere, but not for EC and ED. Spores of these fungi were present throughout the growing season in both hemispheres, possibly due to higher variability in spore types, sporulation conditions, and spore release mechanisms in EC and ED fungi compared to BD. Our analysis has limitations due to knowledge gaps and data availability for some fungi (e.g., Basidiomycetes, causing EC). These limitations are discussed to facilitate further research.

3.
Plants (Basel) ; 12(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836169

ABSTRACT

The growth of four commercial biocontrol agents (BCAs: Bacillus amyloliquefaciens (BAD), Aureobasidium pullulans (APD), Metschnikowia fructicola (MFN), and Trichoderma atroviride (TAS)) was evaluated using turbidimetric assays on artificial substrates mimicking the chemical berry composition at four stages: pea-sized berries, veraison, softening, and ripe berries. The response of BCA growth differed among BCAs. Subsequently, the BCAs' population size was assessed after 1 to 13 days of incubation on the substrate mimicking ripe berries at 15 to 35 °C. The population size of BAD increased with temperatures, while that of MFN decreased; the population sizes of APD and TAS showed bell-shaped patterns with lower growth at 15 or 35 °C. Finally, the BCAs were applied to ripe berries and then incubated at 15 to 30 °C. After 1 to 13 days, the berries were inoculated with B. cinerea and incubated for 7 days, after which the BCA control efficacy was assessed. The highest control was observed at 25 °C for BAD and APD, at 15 to 20 °C for MFN, and at 25 to 30 °C for TAS. The results confirm that the plant substrates and temperature affect the population size of the BCA following application; temperature also affects the preventative efficacy of BCA against B. cinerea.

4.
Plant Dis ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37822098

ABSTRACT

Grapevine trunk diseases are caused by a complex of fungi that belong to different taxa, which produce different spore types and have different spore dispersal mechanisms. It is commonly accepted that rainfall plays a key role in spore dispersal, but there is conflicting information in the literature on the relationship between rain and spore trapping in aerobiology studies. We conducted a systematic literature review, extracted quantitative data from published papers, and used the pooled data for Bayesian analysis of the effect of rain on spore trapping. We selected 17 papers covering 95 studies and 8,778 trapping periods, concerning a total of 26 fungal taxa causing Botryosphaeria dieback (BD), Esca complex (EC), and Eutypa dieback (ED). Results confirmed the role of rain in the spore dispersal of these fungi, but revealed differences among the different fungi. Rain was a good predictor of spore trapping for ED (AUROC = 0.820) and BD (0.766) but not for the Ascomycetes involved in EC (0.569) and not for the only Basidiomycetes, Fomitiporella viticola, studied as for spore discharge (AUROC not significant). Prediction of spore trapping was more accurate for negative than for positive prognosis; a rain cutoff of ≥0.2 mm provided an overall accuracy ≥0.61 for correct prognoses. Spores trapped in rainless periods accounted for only <10% of the total spores. Our analysis had some drawbacks, which were mainly caused by knowledge gaps and limited data availability; these drawbacks are discussed to facilitate further research.

5.
Front Plant Sci ; 14: 1154370, 2023.
Article in English | MEDLINE | ID: mdl-36993848

ABSTRACT

The use of biocontrol agents (BCAs) represents a promising alternative to conventional methods for the management of gray mold in vineyards during the berry ripening stage. The main advantages of BCAs are the short preharvest interval and lack of chemical fungicide residues in wine. In this study, eight commercial BCAs (based on different Bacillus or Trichoderma species and strains, Aureobasidium pullulans, Metschnikowia fructicola, and Pythium oligandrum) and a reference fungicide (boscalid) were applied to a vineyard during berry ripening over three seasons to evaluate the dynamics over time in terms of their relative efficacies in gray mold control. At 1-13 days after application of BCAs to the berry surfaces in field conditions, the berries were collected and artificially inoculated with conidia of Botrytis cinerea under controlled laboratory conditions, and gray mold severity was observed after 7 days of incubation. Significant differences were observed in gray mold severity among years, according to the number of days the BCAs grew on the berry surface before B. cinerea inoculation, and the season by day interaction (altogether accounting for >80% of the experimental variance). The variability in BCA efficacy was closely related to the environmental conditions at the time of application and in the following days. Overall, the BCA efficacy increased with the degree days accumulated between BCA application in the vineyard and B. cinerea inoculation in the dry (no rain) periods (r = 0.914, P = 0.001). Rainfall and the associated drop in temperature caused a relevant reduction of BCA efficacy. These results demonstrate that BCAs are an effective alternative to conventional chemicals for the preharvest control of gray mold in vineyards. However, environmental conditions can considerably affect the BCA efficacy.

6.
Plant Dis ; 107(4): 1005-1008, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36256744

ABSTRACT

Grapevine trunk diseases (GTDs) are serious threats worldwide and are difficult to control, in part because the environmental requirements for epidemiological processes of the causal fungi are poorly understood. Therefore, we investigated the effects of temperature and moisture duration on spore germination of four fungi associated with two GTDs (esca complex and Eutypa dieback): Phaeomoniella chlamydospora, Phaeoacremonium minimum, Cadophora luteo-olivacea, and Eutypa lata. Conidia of Phaeomoniella chlamydospora, Phaeoacremonium minimum, and C. luteo-olivacea were similar: conidia of these fungi germinated profusely (>90%) between 20 and 30°C; Phaeomoniella chlamydospora and Phaeoacremonium minimum tended to germinate at higher temperatures (up to 40°C for P. minimum), and C. luteo-olivacea at lower temperatures (as low as 5°C). E. lata ascospores germinated between 10 and 30°C. The required duration of moist periods for germination was shortest for C. luteo-olivacea (about 6 h), followed by P. minimum and E. lata (about 12 h) and Phaeomoniella chlamydospora (about 24 h). Further research on the environmental requirements of GTD fungi may increase our ability to predict infection periods and, thereby, improve disease control.


Subject(s)
Germination , Spores , Temperature
7.
Plant Dis ; 107(5): 1386-1398, 2023 May.
Article in English | MEDLINE | ID: mdl-36366834

ABSTRACT

Grapevine trunk diseases (GTDs) are serious threats in all viticultural areas of the world, and their management is always complex and usually inadequate. Fragmented and inconsistent information on the epidemiology and environmental requirements of the causal fungi is among the reasons for poor disease control. Therefore, we conducted a quantitative analysis of literature data to determine the effects of temperature on mycelial growth and the effects of temperature and moisture duration on spore germination. Using the collected information, we then developed mathematical equations describing the response of mycelial growth to temperature, and the response of spore germination to temperature and moisture for the different species and disease syndromes. We considered 27 articles (selected from a total of 207 articles found through a systematic literature search) and 116 cases; these involved 43 fungal species belonging to three disease syndromes. The mycelial growth of the fungi causing Botryosphaeria dieback (BD) and the esca complex (EC) responded similarly to temperature, and preferred higher temperatures than those causing Eutypa dieback (ED) (with optimal temperature of 25.3, 26.5, and 23.3°C, respectively). At any temperature, the minimal duration of the moist period required for 50% spore germination was shorter for BD (3.0 h) than for EC (17.2 h) or ED (15.5 h). Mathematical equations were developed accounting for temperature-moisture relationships of GTD fungi, which showed concordance correlation coefficients ≥0.888; such equations should be useful for reducing the risk of infection.


Subject(s)
Ascomycota , Vitis , Xylariales , Temperature , Germination , Syndrome , Vitis/microbiology , Plant Diseases/microbiology , Ascomycota/physiology , Spores
SELECTION OF CITATIONS
SEARCH DETAIL
...