Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(49): 45422-45431, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36530257

ABSTRACT

A novel hybrid adsorption-electrodialysis (AdED) system to remove environmentally harmful boron from geothermal brine was designed and effective operating parameters such as pH, voltage, and flow rate were studied. A cellulose-based adsorbent was synthesized from glycidyl methacrylate (GMA) grafted cellulose and modified with a boron selective n-methyl-d-glucamine (NMDG) group and characterized with SEM-EDX, FT-IR, and TGA analyses. Batch adsorption studies revealed that cellulose-based adsorbent showed a remarkable boron removal capacity (19.29 mg/g), a wide stable operating pH range (2-10), and an adsorption process that followed the Freundlich isotherm (R 2 = 0.95) and pseudo-second-order kinetics (R 2 = 0.99). In the hybrid AdED system, the optimum operating parameters for boron removal were found to be a pH of 10, a voltage of 10 V, a flow rate of 100 mL/min, and an adsorbent dosage of 4 g/L. The presence of the adsorbent in the hybrid system increased boron removal from real geothermal brine (containing 199 ppm boron) from 7.2% to 73.3%. The results indicate that the designed AdED system performs better than bare electrodialysis for boron removal from ion-rich real geothermal brine while utilizing environmentally friendly cellulose-based adsorbent.

SELECTION OF CITATIONS
SEARCH DETAIL
...