Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36616550

ABSTRACT

The purpose of this study was to investigate the extract of Catalpa bignonioides plants and characterize novel natural cellulosic fibers from the fruits as an alternative material for sustainable products. The Catalpa bignonioides tree contains pharmacologically active compounds and is found all over the world. The sustainable natural fibers were easily extracted in an environmentally friendly manner from the fruits of the plant and characterized in terms of their chemical, thermal, and physical properties. The Catalpa bignonioides fibers (CBF) were composed of cellulose (58.3%), hemicellulose (3.1%), and lignin (38.6%) and had a low density (0.713 g/cm3). Fourier transform (FT-IR) analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses were used to search for the chemical groups, crystalline structures, and surface morphology of the CBF fibers. The results suggest that CBF fibers are a suitable alternative for composite and textile applications.

2.
Anal Chim Acta ; 1185: 339075, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34711316

ABSTRACT

A novel montmorillonite clay (MMT) bionanocomposite modified with chitosan (CH), carboxymethyl cellulose (CMC), and benzylimidazolium based dicationic ionic liquid with tetraethylene glycol linker (DIL) was fabricated on stainless steel wire by in situ process. The MMT-CH-CMC-DIL coated solid-phase microextraction (SPME) fiber was examined for the determination of organochlorine pesticides (OCPs) in real samples by HS-SPME-GC method using mass spectrometry (MS) and electron capture detector (ECD). Under optimized conditions, the proposed method exhibited low limits of detection (0.5 ng L-1 with MS and 0.1 ng L-1 with ECD detection), good linearities (R2 = 0.9972-0.9993 with MS and 0.9987-0.9998 with ECD detection), favorable single-fiber repeatability, and fiber-to-fiber reproducibility (less than 8.2% and 9.9% for both types of detection) and high reusability around 125 cycles. Recovery studies were carried out for OCPs in tap water, green tea, and milk samples to verify the applicability of the developed SPME-GC method.


Subject(s)
Chitosan , Ionic Liquids , Nanocomposites , Pesticides , Water Pollutants, Chemical , Bentonite , Electrons , Mass Spectrometry , Pesticides/analysis , Reproducibility of Results , Solid Phase Microextraction , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...