Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JBJS Rev ; 9(7)2021 07 02.
Article in English | MEDLINE | ID: mdl-34223828

ABSTRACT

BACKGROUND: The literature on osteochondral lesions of the tibial plafond (OLTPs) is sparse. The aim of this study was therefore to provide an overview of clinical and radiological outcomes following treatment of OLTPs. METHODS: We performed a systematic search of the MEDLINE, Embase, and Cochrane library databases. The review was performed in accordance with the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines and included all original articles on treatment outcomes for OLTPs. The methodological quality of the articles was assessed using the Methodological Index for Non-Randomized Studies (MINORS). Baseline patient and lesion characteristics were pooled and weighted according to the number of lesions per study. The primary outcome was any clinical or patient-reported outcome measure pooled by treatment method when separable data were available. Secondary outcomes were complications, reoperation rates, radiological outcomes, and sport outcomes. RESULTS: The search yielded 2,079 articles, of which 10 studies (1 prospective case series, 1 retrospective comparative study, and 8 retrospective case series) with a total of 175 patients were included. The overall methodological quality of the studies was low. All patients were treated surgically; 96% of the lesions were primary cases (i.e., first-time surgery) and 58% were solitary tibial lesions (i.e., no opposing talar lesion). Arthroscopic bone marrow stimulation was the most frequently used treatment strategy (51%), followed by cartilage transplantation (17%), chondrogenesis-inducing techniques (11%), osteochondral transplantation (3%), retrograde drilling (3%), and mixed (i.e., inseparable) treatments (15%). The clinical outcomes of the different surgical therapies were considered to be moderate to good. The pooled postoperative AOFAS (American Orthopaedic Foot & Ankle Society) score for bone marrow stimulation and osteochondral transplantation was 54.8 (95% confidence interval [CI], 49.5 to 85.0) (n = 14) and 85.3 (95% CI, 56 to 100) (n = 3), respectively. Overall, complications and reoperations were rarely reported. The pooled complication and reoperation rates could only be calculated for bone marrow stimulation and were 5% and 7%, respectively. CONCLUSIONS: Surgical interventions for OLTPs appear to yield moderate to good clinical outcomes. Bone marrow stimulation resulted in a moderate AOFAS score. Complications and reintervention rates were found to be low. The current evidence in the literature is limited because of the underreporting of clinical, radiological, and sport data and the heterogenous outcome scores reported. LEVEL OF EVIDENCE: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.


Subject(s)
Intra-Articular Fractures , Magnetic Resonance Imaging , Bone Transplantation , Humans , Retrospective Studies , Tibia/surgery
2.
Oper Orthop Traumatol ; 33(2): 160-169, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32902691

ABSTRACT

OBJECTIVE: Provision of a natural scaffold, good quality cells, and growth factors in order to facilitate the replacement of the complete osteochondral unit with matching talar curvature for large medial primary and secondary osteochondral defects of the talus. INDICATIONS: Symptomatic primary and secondary medial osteochondral defects of the talus not responding to conservative treatment; anterior-posterior or medial-lateral diameter >10 mm on computed tomography (CT); closed distal tibial physis in young patients. CONTRAINDICATIONS: Tibiotalar osteoarthritis grade III; multiple osteochondral defects on the medial, central, and lateral talar dome; malignancy; active infectious ankle joint pathology. SURGICAL TECHNIQUE: A medial distal tibial osteotomy is performed, after which the osteochondral defect is excised in toto from the talar dome. The recipient site is microdrilled in order to disrupt subchondral bone vessels. Then, the autograft is harvested from the ipsilateral iliac crest with an oscillating saw, after which the graft is adjusted to an exact fitting shape to match the extracted osteochondral defect and the talar morphology as well as curvature. The graft is implanted with a press-fit technique after which the osteotomy is reduced with two 3.5 mm lag screws and the incision layers are closed. In cases of a large osteotomy, an additional third tubular buttress plate is added, or a third screw at the apex of the osteotomy. POSTOPERATIVE MANAGEMENT: Non-weight bearing cast for 6 weeks, followed by another 6 weeks with a walking boot. After 12 weeks, a CT scan is performed to assess consolidation of the osteotomy and the inserted autograft. The patient is referred to a physiotherapist. RESULTS: Ten cases underwent the TOPIC procedure, and at 1 year follow-up all clinical scores improved. Radiological outcomes showed consolidation of all osteotomies and all inserted grafts showed consolidation. Complications included one spina iliaca anterior avulsion and one hypaesthesia of the saphenous nerve; in two patients the fixation screws of the medial malleolar osteotomy were removed.


Subject(s)
Ilium , Talus , Ankle Joint/diagnostic imaging , Ankle Joint/surgery , Bone Transplantation , Humans , Ilium/diagnostic imaging , Ilium/surgery , Osteotomy , Talus/diagnostic imaging , Talus/surgery , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...