Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(1): e24007, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38268590

ABSTRACT

Introduction: Lipopolysaccharide (Lps) is an essential component responsible for the virulence of gram-negative bacteria. Lps can cause damage to many organs, including the heart, kidneys, and lungs. Dexpanthenol (Dex) is an agent that exhibits anti-oxidative and anti-inflammatory effects and stimulates epithelialization. In this study, we aimed to investigate the effects of Dex on Lps-induced cardiovascular toxicity. Methods: Rats were divided into four groups: control, Lps (5 mg/kg, intraperitoneal), Dex (500 mg/kg, intraperitoneal), and Lps + Dex. The control group received saline intraperitoneally (i.p.) once daily for three days. The Lps group received saline i.p. once daily for three days and a single dose of Lps i.p. was administered on the third day. The Dex group received Dex i.p. once daily for three days and saline on the third day. The Lps + Dex group received Dex i.p. once daily for three days and a single dose of Lps i.p. on the third day. Heart and aortic tissues were taken for biochemical, histopathological, immunohistochemical, and genetic analysis. Results: Lps injection caused histopathological changes in both heart and aortic tissues and significantly increased total oxidant status and oxidative stress index levels. Interleukin-6, and Tumor necrosis factor-α mRNA expressions were significantly altered in heart and aorta, likely do to the anti-inflammatory and antioxidative effects of Dex. Furthermore, Dex affected Caspase-3 and Hypoxia-inducible factor 1-α staining patterns. Conclusions: Our results show that Dex treatment has a protective effect on Lps-induced cardiac and endothelial damage in rats by reducing inflammation, oxidative stress, and apoptosis.

2.
Mol Biol Rep ; 49(7): 6125-6133, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35366178

ABSTRACT

BACKGROUND: Cisplatin (CPN) is used in the treatment of various cancers. However, the especially nephrotoxic effect is limiting its use. We aimed to evaluate the renoprotective effects of Irbesartan (IBN) on CPN-induced acute kidney injury via mitochondrial stress related apoptosis. METHODS AND RESULTS: 32 rats were divided into 4 groups as control, CPN, CPN + IBN and IBN. Water or IBN 50 mg/kg (orally) was administered for 7 days and a single dose of CPN (5 mg/kg) intraperitoneally was given CPN and CPN + IBN groups on fourth day of experiment. At the end of the experiment, serum BUN and creatinine (Cre) levels, which are the indicators of kidney function are measured. Bcl-2-associated X protein (Bax) and B-cell-lymphoma-2 (Bcl-2) mRNA levels were analyzed by using qRT-PCR from kidneys as a mitochondrial stress indicator. Also, active caspase-3(cas-3) protein and tumor necrosis factor alpha (TNF-α) expressions were examined by immunostaining of the kidney tissues. For evaluation of oxidative stress, malondialdehyde (MDA), total oxidant status (TOS) and total antioxidant status (TAS) levels of renal tissues were measured and oxidative stress index (OSI) were calculated. CPN increased serum BUN and creatinine levels. Also, MDA, TOS and OSI levels were significantly elevated and TAS levels decreased in the CPN group. Moreover, CPN elevated the levels of Bax, active cas-3 protein and TNF-α expressions and suppressed Bcl-2 levels. IBN treatment reversed all these changes. CONCLUSIONS: IBN significantly regressed kidney damage by its anti-inflammatory and antioxidant activity via inhibiting mitochondrial stress. IBN could be used as a renoprotective agent in CPN-induced kidney injury.


Subject(s)
Acute Kidney Injury , Cisplatin , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/pathology , Animals , Antioxidants/metabolism , Apoptosis , Cisplatin/pharmacology , Creatinine , Irbesartan , Kidney/metabolism , Oxidative Stress , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Tumor Necrosis Factor-alpha/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL