Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38067438

ABSTRACT

In this research, the removal of boron and arsenic from geothermal water was examined by using novel N-methyl-d-glucamine functionalized gel-like resins (abbreviated as 1JW and 2JW) synthesized by the membrane emulsification method. The outcomes were compared with those of commercially available boron selective chelating ion exchange resin (Diaion CRB 05). According to the results obtained with the novel resins, it was possible to reduce both boron and arsenic concentrations in geothermal water by using these novel gel-like chelating resins below their permissible levels for agricultural irrigation (<1 mg B/L) and drinking water (<0.01 mg As/L) by using the batch method. The optimum resin concentration required for almost complete boron removal (more than 95%) with the two chelating resins was determined to be 2 g/L. The novel gel-like chelating resins 1JW and 2JW achieved 94% of arsenic removal by using the resin concentration of 8 g/L, while the required resin concentration was 32 g/L for 94% of arsenic removal using commercially available Diaion CRB05 resin. In addition, the column performance characteristics of the novel chelating resins for the separation of boron were studied, and the results were compared to those obtained with Diaion CRB05. According to the column data obtained, the total resin capacities of the Diaion CRB05, 1JW, and 2JW resins were calculated as 6.29, 5.08, and 4.64 mg B/mL-resin, respectively.

2.
Membranes (Basel) ; 12(12)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36557099

ABSTRACT

Recently, there have been several studies done regarding anion exchange membranes (AEMs) based on polyepichlorohydrin (PECH), an attractive polymer enabling safe membrane fabrication due to its inherent chloromethyl groups. However, there are still undiscovered properties of these membranes emerging from different compositions of cast solutions. Thus, it is vital to explore new membrane properties for sustainable energy generation by reverse electrodialysis (RED). In this study, the cast solution composition was easily tuned by varying the ratio of active polymer (i.e., blend ratio) and quaternary agent (i.e., excess diamine ratio) in the range of 1.07-2.00, and 1.00-4.00, respectively. The membrane synthesized with excess diamine ratio of 4.00 and blend ratio of 1.07 provided the best results in terms of ion exchange capacity, 3.47 mmol/g, with satisfactory conductive properties (area resistance: 2.4 Ω·cm2, electrical conductivity: 6.44 mS/cm) and high hydrophilicity. RED tests were performed by AEMs coupled with the commercially available Neosepta CMX cation exchange membrane (CEMs).

3.
Membranes (Basel) ; 12(12)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36557147

ABSTRACT

This study investigates the influence of co-existing ions on the salinity gradient power generation performance of the reverse electrodialysis (RED) using three different commercial ion exchange membrane pairs. The feed solutions, including the mixture of two different salts, were prepared with 90 wt.% of NaCl and 10 wt.% of LiCl, KCl, CaCl2, MgCl2 or Na2SO4 by keeping the salt ratio between high concentrate solution and low concentrate solution constant as 1:30 (g/g) at various flow velocities (50, 125 and 200 mL/min). It was observed that the divalent ions exhibited a negative impact on the performance of the RED system due to their high valence and low ionic mobility depending on their high hydrated radius and low diffusion coefficients compared to those of the monovalent ions. On the other hand, the effect of the monovalent ions differed according to the properties of ion exchange membranes used in the RED stack. When the power generation performances of ion exchange membrane pairs employed in the RED stack were compared, it was considered that Neosepta AMX and CMX membranes provided the highest power density due to their low membrane thicknesses, low electrical resistances, and relatively high ion exchange capacities compared to other two commercial ion exchange membrane pairs.

SELECTION OF CITATIONS
SEARCH DETAIL
...