Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Inorg Chem ; 48(4): 1588-98, 2009 Feb 16.
Article in English | MEDLINE | ID: mdl-19146446

ABSTRACT

The nature of metal silane sigma-bond interaction has been investigated in several key systems by a range of experimental and computational techniques. The structure of [Cp'Mn(CO)(2)(eta(2)-HSiHPh(2))] 1 has been determined by single crystal neutron diffraction, and the geometry at the Si atom is shown to approximate a trigonal bipyramid; salient bond distances and angles are Mn-H(1) 1.575(14), Si-H(1) 1.806(14), Si-H(2) 1.501(13) A, and H(1)-Si-H(2) 148.5(8) degrees. This complex is similar to [Cp'Mn(CO)(2)(eta(2)-HSiFPh(2))] 2, whose structure and bonding characteristics have recently been determined by charge density studies based on high-resolution X-ray and neutron diffraction data. The geometry at the Si atom in these sigma-bond complexes is compared with that in other systems containing hypercoordinate silicon. The Mn-H distances for 1 and 2 in solution have been estimated using NMR T(1) relaxation measurements, giving a value of 1.56(3) A in each case, in excellent agreement with the distances deduced from neutron diffraction. Density functional theory calculations have been employed to explore the bonding in the Mn-H-Si unit in 1 and 2 and in the related system [Cp'Mn(CO)(2)(eta(2)-HSiCl(3))] 3. These studies support the idea that the oxidative addition of a silane ligand to a transition metal center may be described as an asymmetric process in which the Mn-H bond is formed at an early stage, while both the establishment of the Mn-Si bond and also the activation of the eta(2)-coordinated Si-H moiety are controlled by the extent of Mn --> sigma*(X-Si-H) back-donation, which increases with increasing electron-withdrawing character of the X substituent trans to the metal-coordinated Si-H bond. This delocalized molecular orbital (MO) approach is complemented and supported by combined experimental and theoretical charge density studies: the source function S(r,Omega), which provides a measure of the relative importance of each atom's contribution to the density at a specific reference point r, clearly shows that all three atoms of the Mn(eta(2)-SiH) moiety contribute to a very similar extent to the density at the Mn-Si bond critical point, in pleasing agreement with the MO model. Hence, we advance a consistent and unifying concept which accounts for the degree of Si-H activation in these silane sigma-bond complexes.


Subject(s)
Coordination Complexes/chemistry , Silanes/chemistry , Models, Molecular , Molecular Structure , Neutron Diffraction
3.
Chemistry ; 14(26): 8013-24, 2008.
Article in English | MEDLINE | ID: mdl-18645991

ABSTRACT

The cyano-substituted metallocenes [M(C5H4CN)2] (M=Fe, 1; Co, 2; Ni 3) and [M(C5Me5)(C5H4CN)] (M=Fe, 4; Co, 5; Ni, 6) were synthesized in yields up to 58 % by treating K(C5H4CN) or Tl(C5H4CN) with suitable transition-metal precursors. Cyclic voltammetry indicated that the oxidation and reduction potentials of all the cyanometallocenes were shifted to positive values by up to 0.8 V. Single-crystal X-ray structure analysis showed that 1 had eclipsed ligands, formed planes in the lattice, and--unlike usual metallocenes--lined up in stacks perpendicular to these planes. Powder X-ray studies established that 1 and 2 are isotypic. The 1H and 13C NMR spectra were recorded for all the new compounds. Signal shifts of up to delta=1500 ppm were recorded for the paramagnetic molecules 2 and 3 and were, at a given temperature, strikingly different for solution and solid-state spectra. These results pointed to antiferromagnetic interactions as a consequence of molecular ordering in the lattice, as confirmed by magnetic measurements. The temperature-dependent susceptibilities were reproduced by Heisenberg spin-chain models (H=-J sum n- 1 i=1 SiSi+1), thus yielding J=-28.3 and -10.3 cm(-1) for 2 and 3, respectively, whereas J=-11.8 cm(-1) was obtained for 3 from the Ising spin-chain model. In accordance with molecular orbital (MO) considerations, much spin density was found to be delocalized not only on the cyclopentadienyl ligand but also the cyano substituents. The magnetic interaction was interpreted as a Heitler-London spin exchange and was analyzed based on how the interaction depends on the singly occupied MOs and the shift of parallel metallocenes relative to each other.

SELECTION OF CITATIONS
SEARCH DETAIL
...