Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Daru ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722566

ABSTRACT

BACKGROUND: Cancer stem cells (CSCs) are a subpopulation of cancer cells that are believed to be responsible for tumor initiation, progression, metastasis, and resistance to conventional therapies. Oleuropein as a natural compound found in olive leaves and olive oil, has potential therapeutic effects in cancer treatment, particularly in targeting CSCs. It induces apoptosis in CSCs while sparing normal cells, inhibit proliferation, migration, and invasion, and suppress the self-renewal ability of CSCs. Additionally, oleuropein has shown synergistic effects with conventional chemotherapy drugs, enhancing their efficacy against CSCs. OBJECTIVES: This study aims to selectively target therapeutically resistant cancer stem cells (CSCs) within a heterogeneous tumor population by utilizing oleuropein (OLE) encapsulated in methacrylated alginate (OLE-mALG) within an in vivo-like microenvironment. PURPOSE: This study aims to target therapeutically resistant cancer stem cells (CSCs) with oleuropein (OLE) encapsulated in the methacrylated alginate (OLE-mALG) in a heterogeneous tumor population with an in vivo-like microenvironment. METHODS: Co-culture of CSCs with non-tumorogenic MCF-12 A cells was performed, the 3D breast cancer model was supported with methocel/matrigel/collagen-I, and vascularization was ensured with human umbilical vein endothelial cells (HUVEC). Then, OLE-loaded methacrylated alginate microparticles (mALG) were formed by dual crosslinking in the presence of both ionic and visible light obtained with a droplet based microfluidic system. The characterization and effectiveness of the produced OLE-mALG were evaluated by the FTIR, swelling/degradation/release analysis. Before producing OLE loaded mALG microparticles, a preliminary study was carried out to determine the effective dose of OLE for cells and the duration of OLE action on MCF-7, CSCs and MCF-12 A. Subsequently, CSC viability (WST-1), apoptosis (Bcl-2, Bax, caspase-3, caspase-9), stemness (OCT3/4, NANOG, SOX2), EMT profile (E-cadherin, Vimentin, Slug) and proliferation (SURVIVIN, p21, CYCLIN D1) after OLE-mALG treatment were all evaluated in the 3D model. RESULTS: OLE was encapsulated in mALG with an efficiency of 90.49% and released 73% within 7 h. OLE-mALG induced apoptosis through the decrease in anti-apoptotic Bcl-2 and an increase in pro-apoptotic Bax, caspase-3, and caspase-9 protein levels. While Vimentin and Slug protein levels decreased after 200 µg/mL OLE-mALG treatment to 3D breast cancer culture, E-cadherin levels increased. OLE-mALG treatment to CSC co-culture led to a decrease in proliferation by triggering p21/SURVIVIN expressions, and also resulted in an increase in stemness genes (OCT3/4/NANOG/SOX2). CONCLUSION: 200 µg/mL OLE-loaded mALG microparticles suppressed epithelial-to-mesenchymal transition by suppressing Vimentin and Slug protein levels, and increased E-cadherin levels in the 3D breast cancer model we created with CSCs, MCF-12 A and HUVECs. This complex system may allow the use of personalized cells for rapid drug screening in preclinical studies compared to animal experiments. OLE-mALG showed apoptotic and metastasis suppressive properties in cancer cells and it was concluded that it can be used in combination with or alternatively with chemotherapeutic agents to target breast cancer stem cells.

2.
DNA Cell Biol ; 43(7): 341-352, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38634821

ABSTRACT

Telocytes have some cytoplasmic extensions called telopodes, which are thought to play a role in mitochondrial transfer in intercellular communication. Besides, it is hypothesized that telocytes establish cell membrane-mediated connections with breast cancer cells in coculture and may contribute to the survival of neoplastic cell clusters together with other stromal cells. The aim of this study is to investigate the contribution of telocytes and telocyte-derived mitochondria, which have also been identified in breast tumors, to the tumor development of breast cancer stem cells (CSCs) via miR-146a-5p. The isolation/characterization of telocytes from bone marrow mononuclear cells and the isolation of mitochondria from these cells were performed, respectively. In the next step, CSCs were isolated from the MDA-MB-231 cell line and were characterized. Then, miR-146a-5p expressions of CSCs were inhibited by anti-miR-146a-5p. The epithelial-mesenchymal transition (EMT) was determined by evaluating changes in vimentin protein levels and was evaluated by analyzing BRCA1, P53, SOX2, E-cadherin, and N-cadherin gene expression changes. Our results showed that miR-146a promoted stemness and oncogenic properties in CSCs. EMT (N-cadherin, vimentin, E-cadherin) and tumorigenic markers (BRCA1, P53, SOX2) of CSCs decreased after miR-146a inhibition. Bone marrow-derived telocytes and mitochondria derived from telocytes favored the reduction of CSC aggressiveness following this inhibition.


Subject(s)
Breast Neoplasms , Coculture Techniques , MicroRNAs , Mitochondria , Neoplastic Stem Cells , Telocytes , Humans , Telocytes/metabolism , Telocytes/pathology , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Cell Line, Tumor , Female , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Carcinogenesis/pathology , Carcinogenesis/genetics , Carcinogenesis/metabolism
3.
Mol Biol Rep ; 51(1): 395, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446251

ABSTRACT

BACKGROUND: This study aims to investigate the roles of telocytes on the metastatic properties of breast cancer stem cells (CSCs), and to re-evaluate the effect of miR-21-5p expression on CSCs following the addition of telocytes. METHODS AND RESULTS: Telocytes from human bone marrow mononuclear cells were isolated/characterised. This was followed by the isolation/characterisation of CSCs from the MDA-MB-231. miR-21-5p was both overexpressed/inhibited in CSCs. Through co-culture studies, EMT transition and oncogenic properties of CSCs were investigated by analysing changes in ALDH1 and vimentin protein levels as well as changes in the ABCC11, SNAI1, LZTFL1, Oct 3/4, E- and N-cadherin gene expression levels. With the inhibition of miR-21-5p, significant increases in LZTFL and ABCC11 were observed with the addition of telocytes. The expression of the LZTFL gene, which decreased with the overexpression of miR-21-5p, increased in CSCs after co-culture with telocytes. While an increase expression of ABCC11, SNAI1, N-Cadherin, vimentin and ALDH was observed in CSCs after overexpression of miR-21-5p, significant decreases in these expressions were observed after co-culture with telocyte. CONCLUSIONS: In our study, by gene/protein level analysis we demonstrated that telocytes may have the potential to reduce cancer metastasis through miR-21-5p in breast cancer progression and reduce EMT transition.


Subject(s)
MicroRNAs , Neoplasms , Telocytes , Humans , Vimentin/genetics , Cadherins , Neoplastic Stem Cells , MicroRNAs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...