Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Antibiotics (Basel) ; 13(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38927210

ABSTRACT

Momordica charantia, commonly known as bitter melon, is a fruiting plant that has been used for several diseases including infectious diseases. In this study, we report the antibacterial, antifungal, and antiviral activity of different bitter melon fruit parts originating from India and Saudi Arabia. The in vitro experiments are supported by the molecular docking of karavilosides to verify their role in the bioactivity. The antimicrobial assays revealed activity against Candida albicans, Escherichia coli, and Staphylococcus aureus. The extracts exhibited the potent inhibition of HIV-I reverse transcriptase, with an IC50 of 0.125 mg/mL observed for the pith extract originating from Saudi Arabia and the standard drug doxorubicin. The molecular docking of karavilosides exhibited a significant affinity to reverse transcriptase comparable to Rilpivirine and higher than that of doxorubicin. These outcomes encourage the precious bioactive components of the seed and pith of the Saudi bitter melon fruits to be further studied for isolation and structure elucidation.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124543, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38850821

ABSTRACT

Futibatinib is a powerful inhibitor of fibroblast growth factor receptors that impedes its phosphorylation and subsequently leading to a reduction in in cell viability across various cell lines. Futibatinib was approved for initial use as an effective treatment for several diseases, including non-small cell lung cancer and breast cancer. Herein, a novel selective fluorescence probe was created for futibatinib quantification in various matrices, including pharmaceutical formulation and human plasma. The technique primarily depends on futibatinib's chemical conversion into a fluorescent product through a reaction with trimethylamine and bromoacetyl bromide. The created fluorescent probe exhibits maximum emission peak at 338 nm upon excitation at 248 nm. The method provided a low detection limit of 0.120 ng/mL and maintained a linear concentration-dependent relationship across the range of 1-200 ng/mL. High sensitivity, accuracy and precision were demonstrated for futibatinib quantification in pharmaceutical formulation and spiked plasma matrix by the method, which was validated in accordance with ICH requirements.


Subject(s)
Limit of Detection , Spectrometry, Fluorescence , Humans , Spectrometry, Fluorescence/methods , Reproducibility of Results , Fluorescent Dyes/chemistry
3.
RSC Adv ; 14(19): 13027-13043, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38660526

ABSTRACT

The parent ethyl 3-(4-benzyl-1-oxophthalazin-2(1H)-yl) propanoate (3) has 25 compounds. Their respective mono, dipeptides and hydrazones derivatives were produced by chemoselective N-alkylation via addition reaction of 4-benzylphthalazin-1(2H)-one (2) with ethyl acrylate and anhydrous potassium carbonate to give ethyl 3-(4-benzyl-1-oxophthalazin-2(1H)-yl) propanoate (3). The ester 3 was hydrazinolyzed to give the corresponding hydrazide 3-(4-benzyl-1-oxophthalazin-2(1H)-yl) propanehydrazide (5), then azide 6 coupled with amino acid ester hydrochloride and/or amines to afford several parent esters 8a-c, then a series of hydrazinolyzed reactions occurred to give corresponding hydrazides 9a-c. The hydrazide 9a was subjected to the azide coupling procedure, which resulted in the formation of various dipeptides. Subsequently, it was condensed with various aldehydes to yield hydrazone derivatives 13a-d. Interestingly, compounds 9c, 12b, and 13c exhibited potent cytotoxicity with IC50 values of 1.58, 0.32 and 0.64 µM compared to sorafenib (IC50 = 2.93 µM). Compound 12b exhibited potent VEGFR2 inhibition by 95.2% with an IC50 value of 17.8 µM compared to sorafenib (94.7% and IC50 of 32.1 µM). For apoptosis activity, 12b-treatment induced apoptosis in HCT-116 cells by 21.7-fold, arresting the cell proliferation at S-phase. Finally, it formed a good binding affinity towards VEGFR2 protein with a binding energy of -10.66 kcal mol-1, and it formed binding interactions with the key interactive amino acids.

4.
J Inflamm Res ; 17: 1897-1917, 2024.
Article in English | MEDLINE | ID: mdl-38544813

ABSTRACT

DPP4 (Dipeptidyl-peptidase 4) a versatile protease, emerges as a prominent player in soluble and membrane-bound forms. Its heightened expression has been intimately linked to the initiation and severity of diverse autoimmune diseases, spanning rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis (SSc), inflammatory bowel disease, autoimmune diabetes, and even SARS-CoV-2 infection. Operating as a co-stimulator of T cell activity, DPP4 propels T cell proliferation by binding adenosine deaminase (ADA), thereby augmenting the breakdown of adenosine-an influential inhibitor of T cell proliferation. However, the discovery of a wide range of DPP4 inhibitors has shown promise in alleviating these diseases' signs, symptoms, and severity. The available DPP4 inhibitors have demonstrated significant effectiveness in blocking DPP4 activity. Based on the characterization of their binding mechanisms, three distinct groups of DPP4 inhibitors have been identified: saxagliptin, alogliptin, and sitagliptin, each representing a different class. Elevated levels of angiotensin-converting enzyme 2 (ACE2) expression are associated with producing various coronavirus peptidases. With its anti-inflammatory properties, Sitagliptin may assist COVID-19 patients in preventing and managing cytokine storms. This comprehensive review delves into the burgeoning realm of DPP4 inhibitors as therapeutic interventions for diverse autoimmune diseases. With a discerning focus on their efficacy, the investigation sheds light on their remarkable capacity to alleviate the burdensome signs and symptoms intricately linked to these conditions.

5.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38399404

ABSTRACT

Drug repurposing is a promising approach that has the potential to revolutionize the drug discovery and development process. By leveraging existing drugs, we can bring new treatments to patients more quickly and affordably. Anti-inflammatory drugs have been shown to target multiple pathways involved in cancer development and progression. This suggests that they may be more effective in treating cancer than drugs that target a single pathway. Cell viability was measured using the MTT assay. The expression of genes related to inflammation (TNFa, IL1b, COX-1, COX-2, and 5-LOX) was measured in HepG2, MCF7, and THLE-2 cells using qPCR. The levels of TNFα, IL1b, COX-1, COX-2, and 5-LOX were also measured in these cells using an ELISA kit. An enzyme binding assay revealed that sulfadiazine expressed weaker inhibitory activity against COX-2 (IC50 = 5.27 µM) in comparison with the COX-2 selective reference inhibitor celecoxib (COX-2 IC50 = 1.94 µM). However, a more balanced inhibitory effect was revealed for sulfadiazine against the COX/LOX pathway with greater affinity towards 5-LOX (IC50 = 19.1 µM) versus COX-1 (IC50 = 18.4 µM) as compared to celecoxib (5-LOX IC50 = 16.7 µM, and COX-1 IC50 = 5.9 µM). MTT assays revealed the IC50 values of 245.69 ± 4.1 µM and 215.68 ± 3.8 µM on HepG2 and MCF7 cell lines, respectively, compared to the standard drug cisplatin (66.92 ± 1.8 µM and 46.83 ± 1.3 µM, respectively). The anti-inflammatory effect of sulfadiazine was also depicted through its effect on the levels of inflammatory markers and inflammation-related genes (TNFα, IL1b, COX-1, COX-2, 5-LOX). Molecular simulation studies revealed key binding interactions that explain the difference in the activity profiles of sulfadiazine compared to celecoxib. The results suggest that sulfadiazine exhibited balanced inhibitory activity against the 5-LOX/COX-1 enzymes compared to the selective COX-2 inhibitor, celecoxib. These findings highlight the potential of sulfadiazine as a potential anticancer agent through balanced inhibitory activity against the COX/LOX pathway and reduction in the expression of inflammatory genes.

6.
Cell Biochem Biophys ; 81(4): 697-706, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37658974

ABSTRACT

In our previous report, the unique architecture of the catalytic chamber of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), which harbours two distinctive binding sites, was fully characterized at molecular level. The significant differences in the two binding sites BS1 and BS2 in terms of binding pockets motif, as well as the preferential affinities of eight anti-viral drugs to each of the two binding sites were described. Recent Cryogenic Electron Microscopy (Cryo-EM) studies on the RdRp revealed that two suramin molecules, a SARS-CoV-2 inhibitor, bind to RdRp in two different sites with distinctive interaction landscape. Here, we provide the first account of investigating the combined inhibitor binding to both binding sites, and whether the binding of two inhibitors molecules concurrently is "Cooperative binding" or not. It should be noted that the binding of inhibitors to different sites do not necessary constitute mutually independent events, therefore, we investigated two scenarios to better understand cooperativity: simultaneous binding and sequential binding. It has been demonstrated by binding free energy calculations (MM/PBSA) and piecewise linear potential (PLP) interaction energy analysis that the co-binding of two suramin molecules is not cooperative in nature; rather, when compared to individual binding, both molecules adversely affect one another's binding affinities. This observation appeared to be primarily due to RdRp's rigidity, which prevented both ligands from fitting comfortably within the catalytic chamber. Instead, the suramin molecules showed a tendency to change their orientation within the binding pockets in order to maintain their binding to the protein, but at the expense of the ligand internal energies. Although co-binding resulted in the loss of several important key interactions, a few interactions were conserved, and these appear to be crucial in preserving the binding of ligands in the active site. The structural and mechanistic details of this study will be useful for future research on creating and developing RdRp inhibitors against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Suramin/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123238, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37562210

ABSTRACT

Aripiprazole is an antipsychotic medicine used to treat a variety of mental disorders, including irritability linked with autism disorder in children. Herein, a green and highly sensitive spectrofluorimetric method was developed for the determination of aripiprazole in pharmaceutical dosage form and plasma matrix. The method based on the formation of a fluorescent adduct from the nucleophilic substitution reaction of 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-chloride) with aripiprazole, which can be detected at 542 nm following excitation at 481 nm. Factors that affect the development and fluorescence sensitivity of the reaction product were investigated and optimized. The reaction yielded the most optimal fluorescence responses when it was performed using 1.5 mL of 0.2 % w/v NBD-chloride, 1.5 mL of borate buffer pH 9, heating at 80 °C for 20 min, and ethanol as a diluting solvent. The method was validated as per ICH guidelines for analytical and bioanalytical procedures. Good linearity was established between the fluorescence responses of the reaction product and aripiprazole concentrations in the range of 100-1200 ng/mL with adequate accuracy and precision results. The applied method was very sensitive and selectively determined aripiprazole in pharmaceutical and plasma matrices with no interferences. Furthermore, the compliance of the proposed method with the principles of green analytical chemistry was evaluated in comparison with the reported method using analytical eco-scale and AGREE metrics. The outputs proved that the proposed method complied more with the principles of green analytical chemistry than the reported method.


Subject(s)
4-Chloro-7-nitrobenzofurazan , Chlorides , Child , Humans , Aripiprazole , Spectrometry, Fluorescence/methods , Pharmaceutical Preparations
8.
RSC Adv ; 13(26): 17765-17774, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37323441

ABSTRACT

Autism is one of the most pressing issues facing the international community in recent years, particularly in Middle Eastern countries. Risperidone is a selective serotonin type 2 and dopamine type 2 receptor antagonist. It is the most administered antipsychotic medication in children with autism-related behavioral disorders. Therapeutic monitoring of risperidone may improve safety and efficacy in autistic individuals. The main objective of this work was to develop a highly sensitive green fitted method for the determination of risperidone in the plasma matrix and pharmaceutical dosage forms. Novel water-soluble N-carbon quantum dots were synthesized from guava fruit, a natural green precursor, and used for determination of risperidone based on quenching fluorescence spectroscopy phenomena. The synthesized dots were characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. The synthesized N-carbon quantum dots exhibited aquantum yield of 26.12% and showed a strong emission fluorescence peak at 475 nm when excited at 380 nm. The fluorescence intensity of the N-carbon quantum dots decreased with increasing risperidone concentration, indicating that the fluorescence quenching was concentration dependent. The presented method was carefully optimized and validated according to the guidelines of ICH, and it demonstrated good linearity in a concentration range of 5-150 ng mL-1. With a LOD of 1.379 ng mL-1 and a LOQ of 4.108 ng mL-1, the technique was extremely sensitive. Due to the high sensitivity of the proposed method, it could be effectively used for the determination of risperidone in the plasma matrix. The proposed method was compared with the previously reported HPLC method in terms of sensitivity and green chemistry metrics. The proposed method proved to be more sensitive and compatible with the principles of green analytical chemistry.

9.
Front Pharmacol ; 13: 1020602, 2022.
Article in English | MEDLINE | ID: mdl-36330087

ABSTRACT

Nanoformulation-based combinational drug delivery systems are well known to overcome drug resistance in cancer management. Among them, nanoemulsions are well-known and thermodynamically stable drug delivery systems suitable for carrying hydrophobic drugs and phytoconstituents to tackle drug-resistant cancers. In the present study, we have investigated the effect of paclitaxel in combination with erucin (natural isothiocyanate isolated from the seeds of Eruca sativa) loaded in the frankincense oil-based nanoemulsion formulation. The choice of frankincense oil for the current study was based on reported research investigations stating its magnificient therapeutic potential against breast cancer. Optimized nanoemulsion of paclitaxel (PTX) and erucin (ER) combination (EPNE) provided sustained release and exhibited enhanced cytotoxicity towards human epithelial breast cancer cells (T-47D) as compared to individual ER and PTX. EPNE was further assessed for its antitumor activity in the 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer mice model. EPNE significantly decreased the levels of hepatic and renal parameters along with oxidative stress in breast cancer mice. Furthermore, EPNE also showed decreased levels of inflammatory cytokines TNF-α, IL-6. Histopathological examinations revealed restoration of the tumorous breast to normal tissues in EPNE-treated breast cancer mice. Therefore, EPNE can act as a viable lead and therapeutic option for drug-resistant breast cancer.

10.
Cardiovasc Toxicol ; 22(1): 67-77, 2022 01.
Article in English | MEDLINE | ID: mdl-34623620

ABSTRACT

Administration of Chemotherapeutics, especially doxorubicin (DOX) and cyclophosphamide (CPS), is commonly associated with adverse effects such as myelosuppression and cardiotoxicity. At this time, few approved therapeutic options are currently available for the management of chemotherapy-associated cardiotoxicity. Thus, identification of novel therapeutics with potent cardioprotective properties and minimal adverse effects are pertinent in treating Doxorubicin and Cyclophosphamide-induced cardiotoxicity. Oroxylum indicum extract (OIE, Sabroxy®) is a natural product known to possess several beneficial biological functions including antioxidant, anti-inflammatory and cytoprotective effects. We therefore set to investigate the cardioprotective effects of OIE against Doxorubicin and Cyclophosphamide-induced cardiotoxicity and explore the potential cardioprotective mechanisms involved. Adult male mice were treated with DOX and CPS in combination, OIE alone, or a combination of OIE and DOX & CPS. Swimming test was performed to assess cardiac function. Markers of oxidative stress were assessed by levels of reactive oxygen species (ROS), nitrite, hydrogen peroxide, catalase, and glutathione content. The activity of interleukin converting enzyme and cyclooxygenase was determined as markers of inflammation. Mitochondrial function was assessed by measuring Complex-I activity. Apoptosis was assessed by Caspase-3 and protease activity. Mice treated with DOX and CPS exhibited reduced swim rate, increased oxidative stress, increased inflammation, and apoptosis in the heart tissue. These cardiotoxic effects were significantly reduced by co-administration of OIE. Furthermore, computational molecular docking studies revealed potential binding of DOX and CPS to tyrosine hydroxylase which validated our in vivo findings regarding the inhibition of tyrosine hydroxylase activity. Our current findings indicated that OIE counteracts Doxorubicin and Cyclophosphamide-induced cardiotoxicity-through inhibition of ROS-mediated apoptosis and by blocking the effect on tyrosine hydroxylase. Taken together, our findings suggested that OIE possesses cardioprotective effects to counteract potentially fatal cardiac complications associated with chemotherapy treatment.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Bignoniaceae , Heart Diseases/prevention & control , Mitochondria, Heart/drug effects , Myocytes, Cardiac/drug effects , Plant Extracts/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Antioxidants/isolation & purification , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Bignoniaceae/chemistry , Cardiotoxicity , Cyclophosphamide , Disease Models, Animal , Doxorubicin , Heart Diseases/chemically induced , Heart Diseases/metabolism , Heart Diseases/pathology , Inflammation Mediators/metabolism , Male , Mice, Inbred C57BL , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Plant Extracts/isolation & purification , Reactive Oxygen Species/metabolism , Tyrosine 3-Monooxygenase/antagonists & inhibitors , Tyrosine 3-Monooxygenase/metabolism
11.
Front Pharmacol ; 11: 551911, 2020.
Article in English | MEDLINE | ID: mdl-33384596

ABSTRACT

Chronic inflammation is a key culprit factor in the onset and progression of several diseases. Novel and pharmacologically effective therapeutic approaches are needed for new treatment remedy or improved pharmacokinetics and pharmacodynamics for existing synthetic drugs, in particular natural products. Boswellic acids are well-known natural products, with capacity to effectively retard inflammation without severe adverse effects. However, the therapeutic use of Boswellic acids are greatly hindered by its poor pharmacokinetic properties. Co-administration strategies that facilitate the oral absorption and distribution of Boswellic acids should lead to a safe and more effective use of this product prophylactically and therapeutically in inflammatory disorders. In this study, we examined the effect of Piper longum extract on the absorption and bioavailability of Boswellic acid in rabbits. In addition, we further explored computational pharmacodynamic interactions between Piper longum and Boswellic acid. Piper longum extract at 2.5 and 10 mg/kg, increased the bioavailability of Boswellic acid (p < 0.05). Based on our drug-based computational modeling, cytochrome P450 (CYP450)-mediated mechanism was involved in increased bioavailability. These findings confirmed that Piper longum with Boswellic acid may be administered orally together for effective therapeutic efficacy. Thus, our studies support the application of Piper longum with Boswellic acid as a novel therapeutic avenue in diseases associated with inflammation.

12.
Biochemistry ; 57(32): 4923-4933, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30063132

ABSTRACT

Tuberculosis represents a significant public health crisis. There is an urgent need for novel molecular scaffolds against this pathogen. We screened a small library of marine-derived compounds against shikimate kinase from Mycobacterium tuberculosis ( MtSK), a promising target for antitubercular drug development. Six manzamines previously shown to be active against M. tuberculosis were characterized as MtSK inhibitors: manzamine A (1), 8-hydroxymanzamine A (2), manzamine E (3), manzamine F (4), 6-deoxymanzamine X (5), and 6-cyclohexamidomanzamine A (6). All six showed mixed noncompetitive inhibition of MtSK. The lowest KI values were obtained for 6 across all MtSK-substrate complexes. Time-dependent analyses revealed two-step, slow-binding inhibition. The behavior of 1 was typical; initial formation of an enzyme-inhibitor complex (EI) obeyed an apparent KI of ∼30 µM with forward ( k5) and reverse ( k6) rate constants for isomerization to an EI* complex of 0.18 and 0.08 min-1, respectively. In contrast, 6 showed a lower KI for the initial encounter complex (∼1.5 µM), substantially faster isomerization to EI* ( k5 = 0.91 min-1), and slower back conversion of EI* to EI ( k6 = 0.04 min-1). Thus, the overall inhibition constants, KI*, for 1 and 6 were 10 and 0.06 µM, respectively. These findings were consistent with docking predictions of a favorable binding mode and a second, less tightly bound pose for 6 at MtSK. Our results suggest that manzamines, in particular 6, constitute a new scaffold from which drug candidates with novel mechanisms of action could be designed for the treatment of tuberculosis by targeting MtSK.


Subject(s)
Mycobacterium tuberculosis/enzymology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Carbazoles/pharmacology , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Indole Alkaloids/pharmacology , Kinetics
13.
Bioorg Med Chem Lett ; 28(4): 802-808, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29366649

ABSTRACT

Single dose high-throughput screening (HTS) followed by dose-response evaluations is a common strategy for the identification of initial hits for further development. Early identification and exclusion of false positives is a cost-saving and essential step in early drug discovery. One of the mechanisms of false positive compounds is the formation of aggregates in assays. This study evaluates the mechanism(s) of inhibition of a set of 14 compounds identified previously as actives in Mycobacterium tuberculosis (Mt) cell culture screening and in vitro actives in Mt shikimate kinase (MtSK) assay. Aggregation of hit compounds was characterized using multiple experimental methods, LC-MS, 1HNMR, dynamic light scattering (DLS), transmission electron microscopy (TEM), and visual inspection after centrifugation for orthogonal confirmation. Our results suggest that the investigated compounds containing oxadiazole-amide and aminobenzothiazole moieties are false positive hits and non-specific inhibitors of MtSK through aggregate formation.


Subject(s)
Benzothiazoles/pharmacology , Enzyme Inhibitors/pharmacology , Oxadiazoles/pharmacology , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Benzothiazoles/chemistry , Enzyme Inhibitors/chemistry , Mycobacterium tuberculosis/enzymology , Oxadiazoles/chemistry , Particle Size , Riluzole/pharmacology , Solubility
14.
Saudi Pharm J ; 21(3): 255-60, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23960841

ABSTRACT

The current study aims to evaluate the patient's level of satisfaction with health care services provided by the pharmacist at Aljaber ENT hospital, Eastern Region Alahsah, Kingdom of Saudi Arabia. A cross sectional study was planned from 1st March 2011 until 31st May 2011. A 27 item questionnaire was used, scoring of the responses was done to classify the patient satisfaction into sublevels. The maximum possible score was 36; those scoring less than twenty were graded as poor satisfaction level followed by moderate satisfaction level 21-25, good satisfaction level 26-30 and high satisfaction level 31-36. Statistical package for social science version 13® was used to analyze data, One-way ANOVA and independent sample t-test were applied to see the differences in the level of satisfaction. Every third patient visiting pharmacy was given a chance to participate in this study. A total of N = 991 patients were randomized using the pharmacy appointment number. Of whom 657 patients have shown willingness to participate in this study. The response rate of this study was 66.30%, most of the respondents 383 (58.1%) were male ranging from the age group of 21-40 years with a mean age of 32 years SD 9.73. The mean score for all patients was 26.15 SD ±3.4. Among all the demographic variables a significant difference in satisfaction level was found among in terms of age (df = 8, F = 8.36, p = <0.001(∗)), gender (t = -4.089, df = 656, p=<0.001(∗)) and race (df = 2, F = 8.47, p = <0.001. The satisfaction level among Saudi nationals was least in comparison to Egyptians and others. In general, it is seen that respondents of age 56-60 years were most satisfied with the healthcare services provided by the pharmacist. In addition, the satisfaction level was higher among female patients in comparison to men.

SELECTION OF CITATIONS
SEARCH DETAIL
...