Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Elife ; 122023 07 04.
Article in English | MEDLINE | ID: mdl-37401629

ABSTRACT

The bloodstream represents a hostile environment that bacteria must overcome to cause bacteraemia. To understand how the major human pathogen Staphylococcus aureus manages this we have utilised a functional genomics approach to identify a number of new loci that affect the ability of the bacteria to survive exposure to serum, the critical first step in the development of bacteraemia. The expression of one of these genes, tcaA, was found to be induced upon exposure to serum, and we show that it is involved in the elaboration of a critical virulence factor, the wall teichoic acids (WTA), within the cell envelope. The activity of the TcaA protein alters the sensitivity of the bacteria to cell wall attacking agents, including antimicrobial peptides, human defence fatty acids, and several antibiotics. This protein also affects the autolytic activity and lysostaphin sensitivity of the bacteria, suggesting that in addition to changing WTA abundance in the cell envelope, it also plays a role in peptidoglycan crosslinking. With TcaA rendering the bacteria more susceptible to serum killing, while simultaneously increasing the abundance of WTA in the cell envelope, it was unclear what effect this protein may have during infection. To explore this, we examined human data and performed murine experimental infections. Collectively, our data suggests that whilst mutations in tcaA are selected for during bacteraemia, this protein positively contributes to the virulence of S. aureus through its involvement in altering the cell wall architecture of the bacteria, a process that appears to play a key role in the development of bacteraemia.


Subject(s)
Bacteremia , Staphylococcal Infections , Animals , Humans , Mice , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism , Cell Wall/metabolism , Anti-Bacterial Agents/pharmacology , Teichoic Acids/metabolism
3.
bioRxiv ; 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36865143

ABSTRACT

The bloodstream represents a hostile environment that bacteria must overcome to cause bacteraemia. To understand how the major human pathogen Staphylococcus aureus manages this we have utilised a functional genomics approach to identify a number of new loci that affect the ability of the bacteria to survive exposure to serum, the critical first step in the development of bacteraemia. The expression of one of these genes, tcaA, was found to be induced upon exposure to serum, and we show that it is involved in the elaboration of a critical virulence factor, the wall teichoic acids (WTA), within the cell envelope. The activity of the TcaA protein alters the sensitivity of the bacteria to cell wall attacking agents, including antimicrobial peptides, human defence fatty acids, and several antibiotics. This protein also affects the autolytic activity and lysostaphin sensitivity of the bacteria, suggesting that in addition to changing WTA abundance in the cell envelope, it also plays a role in peptidoglycan crosslinking. With TcaA rendering the bacteria more susceptible to serum killing, while simultaneously increasing the abundance of WTA in the cell envelope, it was unclear what effect this protein may have during infection. To explore this, we examined human data and performed murine experimental infections. Collectively, our data suggests that whilst mutations in tcaA are selected for during bacteraemia, this protein positively contributes to the virulence of S. aureus through its involvement in altering the cell wall architecture of the bacteria, a process that appears to play a key role in the development of bacteraemia.

4.
Microbiology (Reading) ; 169(1)2023 01.
Article in English | MEDLINE | ID: mdl-36748621

ABSTRACT

In recent work we identified genes that confer the slow-growing and antibiotic-resistant small-colony variant (SCV) form of Staphylococcus aureus, as associated with the amount of capsule the bacteria produce. In this study we isolated a triclosan-resistant SCV (tr-SCV) and demonstrated that it produces significantly less capsule, an effect that appears to be mediated at the transcriptional stage. As with other SCVs, we found that the tr-SCV produces less toxins, and when compared to both a capsule and an Agr mutant we found the tr-SCV to be significantly attenuated in an insect model of infection.


Subject(s)
Staphylococcal Infections , Triclosan , Humans , Triclosan/pharmacology , Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology
5.
Microbiology (Reading) ; 167(11)2021 11.
Article in English | MEDLINE | ID: mdl-34825882

ABSTRACT

Staphylococcus aureus is a major human pathogen that utilises a wide array of pathogenic and immune evasion strategies to cause disease. One immune evasion strategy, common to many bacterial pathogens, is the ability of S. aureus to produce a capsule that protects the bacteria from several aspects of the human immune system. To identify novel regulators of capsule production by S. aureus, we applied a genome wide association study (GWAS) to a collection of 300 bacteraemia isolates that represent the two major MRSA clones in UK and Irish hospitals: CC22 and CC30. One of the loci associated with capsule production, the menD gene, encodes an enzyme critical to the biosynthesis of menadione. Mutations in this gene that result in menadione auxotrophy induce the slow growing small-colony variant (SCV) form of S. aureus often associated with chronic infections due to their increased resistance to antibiotics and ability to survive inside phagocytes. Utilising such an SCV, we functionally verified this association between menD and capsule production. Although the clinical isolates with polymorphisms in the menD gene in our collections had no apparent growth defects, they were more resistant to gentamicin when compared to those with the wild-type menD gene. Our work suggests that menadione is involved in the production of the S. aureus capsule, and that amongst clinical isolates polymorphisms exist in the menD gene that confer the characteristic increased gentamicin resistance, but not the major growth defect associated with SCV phenotype.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Genome-Wide Association Study , Humans , Microbial Sensitivity Tests , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism , Vitamin K 3/metabolism , Vitamin K 3/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...