Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 21(8): 4523-4537, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30735227

ABSTRACT

Molecular order and dynamics of the CB-C9-CB liquid crystalline dimer exhibiting the nematic (N) and the twist bend nematic (Ntb) phases were investigated by proton NMR spectroscopy, using fields of 0.78 T and 7.04 T, and relaxometry. The first relaxometry experiments for a very wide Larmor frequency domain (8 kHz-300 MHz) on this system, using a combination of standard and fast field cycling NMR techniques, were performed. The spectroscopy results in the Ntb phase allowed us to probe the local molecular orientation relative to the Ntb helix axis. The relaxation data were analyzed considering order director fluctuations (ODF), molecular self-diffusion (SD) and local molecular rotations/reorientations (R) relaxation mechanisms. Global fits of theoretical relaxation models, as a function of temperature and Larmor frequency, for the phases under investigation, allowed for the determination of rotational correlation times, diffusion coefficients, viscoelastic parameters, correlation lengths and activation energies (in the case of thermally activated mechanisms). A clear difference between the structures of the N and Ntb phases was detected from the results of proton spin-lattice relaxation through distinct temperature and frequency dependencies' signatures of the collective modes. Significant pre-transitional effects were observed at the N-Ntb phase transition both from relaxometry and spectroscopy data. The experimental results correlate to data and models for comparable liquid crystalline systems.

2.
ACS Omega ; 2(12): 9127-9135, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-29302634

ABSTRACT

An optical resonance method for the determination of the strain- and stress-optical coefficients of optically transparent polymers is presented and exemplified for monodisperse and bidisperse molecular weight polystyrene (PS). This method employs whispering gallery modes (WGMs) resonation inside a spheroid polymeric cavity, suspended on an optical fiber taper waist, which, in turn, is used for subjecting the polymeric resonator to controlled strain conditions. The wavelength shifts of equal order transverse electric and transverse magnetic polarization WGMs are measured, as well as their relative birefringence versus applied strain. For monodisperse PS microspheroids (2 and 50 kDa) the stress-optical coefficient is negative, contrary to the results for bulk PS in the glassy state indicating different phenyl group orientation of the PS monomer with respect to the strain direction. In the bidisperse (2 and 50 kDa) spheroid with a symmetric monomer composition, local structural irregularities are probably responsible for the observed coupling between WGMs. The method possesses metrological capabilities for probing the molecular orientation of polymer-based resonators.

SELECTION OF CITATIONS
SEARCH DETAIL
...