Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Biochem Pharmacol ; 73(8): 1084-96, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17129577

ABSTRACT

The successful cloning and functional expression of the histamine H(3) receptor in the late 1990 s has greatly facilitated our efforts to identify small molecule, non-imidazole based compounds to permit the evaluation of H(3) antagonists in models of CNS disorders. High-throughput screening identified several series of lead compounds, including a series of imidazopyridines, which led to JNJ-6379490, a compound with high affinity for the human H(3) receptor. Analysis of structural features common to several series of non-imidazole H(3) receptor ligands resulted in a pharmacophore model. This model led to the design of JNJ-5207852, a diamine-based H(3) antagonist with good in vitro and in vivo efficacy but with an undesirable long half-life. However, further modifications of the template provided an understanding of the effect of structural modifications on pharmacokinetic properties, ultimately affording several additional series of compounds including JNJ-10181457, a compound with an improved pharmacokinetic profile. These compounds allowed in vivo pharmacological evaluation to show that H(3) antagonists promote wakefulness, but unlike modafinil and classical psychostimultants, they do not increase locomotor activity or produce any alteration of the EEG power spectral activity in rats. H(3) antagonists also increase extracellular acetylcholine and norepinephrine but not dopamine in rat frontal cortex and show efficacy in various models of learning-memory deficit. In addition, cFos immunoreactivity studies show H(3) antagonists activate neuronal cells in restricted rat brain regions in contrast to widespread activation after modafinil or amphetamine treatment. Therefore, H(3) antagonists are promising clinical candidates for the treatment of excessive day time sleepiness and/or cognitive disorders.


Subject(s)
Histamine Antagonists/pharmacology , Piperidines/pharmacology , Receptors, Histamine H3/metabolism , Animals , Cloning, Molecular , Cognition Disorders/drug therapy , DNA, Complementary/isolation & purification , DNA, Complementary/metabolism , Diamines/chemistry , Histamine Antagonists/therapeutic use , Humans , Male , Morpholines/pharmacology , Morpholines/therapeutic use , Narcolepsy/drug therapy , Piperidines/therapeutic use , Rats , Rats, Wistar , Receptors, Histamine H3/genetics , Receptors, Histamine H3/physiology
3.
Br J Pharmacol ; 143(5): 649-61, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15466448

ABSTRACT

1 1-[4-(3-piperidin-1-yl-propoxy)-benzyl]-piperidine (JNJ-5207852) is a novel, non-imidazole histamine H3 receptor antagonist, with high affinity at the rat (pKi=8.9) and human (pKi=9.24) H3 receptor. JNJ-5207852 is selective for the H3 receptor, with negligible binding to other receptors, transporters and ion channels at 1 microm. 2 JNJ-5207852 readily penetrates the brain tissue after subcutaneous (s.c.) administration, as determined by ex vivo autoradiography (ED50 of 0.13 mg kg(-1) in mice). In vitro autoradiography with 3H-JNJ-5207852 in mouse brain slices shows a binding pattern identical to that of 3H-R-alpha-methylhistamine, with high specific binding in the cortex, striatum and hypothalamus. No specific binding of 3H-JNJ-5207852 was observed in brains of H3 receptor knockout mice. 3 In mice and rats, JNJ-5207852 (1-10 mg kg(-1) s.c.) increases time spent awake and decreases REM sleep and slow-wave sleep, but fails to have an effect on wakefulness or sleep in H3 receptor knockout mice. No rebound hypersomnolence, as measured by slow-wave delta power, is observed. The wake-promoting effects of this H3 receptor antagonist are not associated with hypermotility. 4 A 4-week daily treatment of mice with JNJ-5207852 (10 mg kg(-1) i.p.) did not lead to a change in body weight, possibly due to the compound being a neutral antagonist at the H3 receptor. 5 JNJ-5207852 is extensively absorbed after oral administration and reaches high brain levels. 6 The data indicate that JNJ-5207852 is a novel, potent and selective H3 antagonist with good in vitro and in vivo efficacy, and confirm the wake-promoting effects of H3 receptor antagonists.


Subject(s)
Histamine Antagonists/pharmacology , Piperidines/pharmacology , Receptors, Histamine H3/drug effects , Wakefulness/drug effects , Administration, Oral , Animals , Autoradiography , Body Temperature/drug effects , Body Weight/drug effects , Cyclic AMP/metabolism , Electrodes , Electroencephalography/drug effects , Electromyography/drug effects , Histamine Antagonists/administration & dosage , Histamine Antagonists/pharmacokinetics , Humans , Injections, Intravenous , Male , Mice , Mice, Knockout , Mice, Obese , Motor Activity/drug effects , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Polysomnography , Rats , Rats, Sprague-Dawley , Receptors, Histamine H3/genetics , Sleep/drug effects , Transducers
SELECTION OF CITATIONS
SEARCH DETAIL
...