Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(24): 16396-16404, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37266501

ABSTRACT

Cysteine is one of the important amino acids that is involved in various physiological processes, food industries, pharmaceuticals, and personal care. It also serves as a biomarker for some diseases. The large use of cysteine necessitates rapid, cheap, and accurate determination of cysteine in a range of samples. Although many techniques have been employed for the detection of cysteine, they suffer from limitations that make them unsuitable for routine analysis. Here we report on a cheap colorimetric method using biosynthesized silver nanoparticles (AgNPs) as nanozymes. The AgNPs were characterized by UV/visible spectrophotometry, scanning electron microscopy (SEM), and surface-enhanced Raman spectroscopy (SERS). The AgNPs exhibit peroxidase-like activity using o-phenylenediamine (OPD) as a chromogenic reagent. The low Km values observed for OPD and H2O2 (0.9133 and 61.56 mM respectively) show strong affinity of the substrates to AgNPs. The peroxidase-like activity of AgNPs, however, was inhibited on the addition of cysteine. The results show that the absorption intensity of the oxidized OPD decreased linearly with the concentration of cysteine in the range of 0.5-20 µM. The limit of detection (LOD) in this linear range was found to be as low as 90.4 nM. The recovery from urine sample (spiked with cysteine) analyses demonstrated the feasibility of the method in real sample application. From our findings, we anticipate that our method can be applied for the analysis of cysteine in various samples.

2.
Environ Sci Pollut Res Int ; 29(54): 81938-81953, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35739451

ABSTRACT

In this study, an aqueous extract of Sclerocarya birrea leaves was used as a reducing agent to synthesize silver nanoparticles (AgNPs). The synthesis was carried out at room temperature and was both rapid and simple. Different characterization techniques such as UV/visible spectroscopy, surface-enhanced Raman spectroscopy, X-ray diffraction, and focused ion beam scanning electron microscopy were used to confirm the formation of AgNPs. The synthesized nanoparticles exhibited catalytic activity for the reduction of 4-nitrophenol, methyl orange, methylene blue, and rhodamine 6G. The catalytic activity was monitored by measuring the UV/visible absorbance spectra of the compounds using sodium borohydride as a reducing agent and found to be high. Additionally, the particles displayed oxidase-like activity. In the presence of AgNPs, 3, 3', 5, 5'-tetramethylbenzidine (TMB) which is colorless was transformed to oxidized TMB, which is blue, using dissolved oxygen as the oxidant. In the presence of Hg2+, the oxidase-like activity was enhanced. On the basis of this observation, an assay for the analysis of Hg2+ was developed. The linear range of the calibration curve is wide (0-600 µM) and the limit of detection (LOD) is low, as small as 34.8 nM. The method is strongly selective towards Hg2+. Tap water obtained from the laboratory where these experiments were carried out was used to study the feasibility of the method in real sample analyses.


Subject(s)
Environmental Pollutants , Mercury , Metal Nanoparticles , Silver/chemistry , Metal Nanoparticles/chemistry , Mercury/analysis , Reducing Agents , Methylene Blue/chemistry , Environmental Pollutants/analysis , Oxidoreductases , Ions , Water/chemistry , X-Ray Diffraction , Oxidants , Oxygen/analysis , Plant Extracts/chemistry
3.
Anal Chim Acta ; 1107: 193-202, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32200894

ABSTRACT

In this study, a facile one step solvo-thermal procedure has been employed in generating magnetite-silver core-shell nanocomposites (AgNPs@ Fe3O4) with superior peroxidase-like catalytic property than bare magnetic nanoparticles (Fe3O4). The composites were characterized using different techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and surface-enhanced infrared absorption spectroscopy (SEIRA). In the presence of hydrogen peroxide, the synthesized composites were able to oxidize the colorless o-phenylenediamine (OPD) to a yellow colour 2, 3-diaminophenazine (DAP) with a better peroxidase-like activity than Fe3O4 alone. The obtained Km value of AgNPs@ Fe3O4 with H2O2 and OPD substrates are 28.0 mM and 2.91 mM respectively. These are substantially lower than previously reported values and indicate the strong binding affinity of the substrates towards AgNPs@ Fe3O4 nanocomposites. Based on the obstruction activity of cysteine on the peroxidase-like catalytic property of the nanocomposites, a sensor was developed for detection of cystein with a limit of detection as low as 87 nM and a wider range of linearity. The sensor also exhibited excellent selectivity against potentially interfering molecules.


Subject(s)
Cysteine/analysis , Ferric Compounds/chemistry , Magnetite Nanoparticles/chemistry , Nanocomposites/chemistry , Catalysis , Cysteine/chemistry , Hydrogen Peroxide/chemistry , Limit of Detection , Oxidation-Reduction , Phenylenediamines/chemistry , Silver/chemistry , Spectrophotometry, Ultraviolet
4.
Anal Chim Acta ; 1073: 62-71, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31146837

ABSTRACT

In this study, silver nanostructures decorated magnetic nanoparticles for surface-enhanced Raman scattering (SERS) measurements were prepared via heat induced catalytic activity of ZnO nanostructures. The ZnO/Fe3O4 composite was first prepared by dispersing pre-formed magnetic nanoparticles into alkaline zinc nitrate solutions. After annealing of the precipitates, the formed ZnO/Fe3O4 composites were successfully decorated with silver nanostructures by dispersing the composites into silver nitrate/ethylene glycol solution at 95 °C in water bath. To find the optimal condition when preparing Ag/ZnO/Fe3O4 composites for SERS measurements, factors such as reaction time and concentration of silver nitrate were studied. Results indicated that the formation of silver nanoparticles (AgNPs) on ZnO/Fe3O4 was significantly improved with the assistance of ZnO. The concentration of silver nitrate and reaction time affected the morphologies and sizes of the formed composites and optimal condition in preparation of the composites for SERS measurement was found using 100 mM of silver nitrate with a reaction time of 20 min. Under optimized conditions, the obtained SERS intensities were highly reproducible. The substrates were applied for quantitative analysis of uric acid in aqueous solution and a linear response for concentrations up to 10 µM was obtained. Successful application of these prepared composites to determine uric acid in urine sample without any pretreatment of the urine sample was done.


Subject(s)
Ferrosoferric Oxide/chemistry , Magnetite Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Uric Acid/analysis , Zinc Oxide/chemistry , Particle Size , Spectrum Analysis, Raman , Surface Properties
6.
Heliyon ; 4(7): e00682, 2018 07.
Article in English | MEDLINE | ID: mdl-30014047

ABSTRACT

In this study, vesicular basalt volcanic rock was taken and its application for adsorption of chromium (VI) from aqueous solution was investigated. Different physical and chemical properties of the powdered rock was studied using Fourier transform infrared spectroscopy (FT-IR), Powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). A series of batch experiments were carried out to study the effect of various experimental parameters (pH, ionic strength and contact time) on chromium (VI) adsorption. It was found that the removal efficiency of chromium (VI) decreased with increasing pH and ionic strength. The adsorption process was optimal at pH 2. The maximum adsorption capacity was 79.20 mg kg-1 at an initial concentration of 5.0 mg L-1 and adsorbent dosage of 50 g L-1. In individual adsorption tests, Pseudo-second-order kinetic and Freundlich isotherm models could better describe chromium (VI) adsorption on the vesicular basalt. This study indicated that vesicular basalt, which is inexpensive, has the potential to remove chromium (VI) from polluted water.

7.
Anal Chim Acta ; 1007: 40-49, 2018 May 12.
Article in English | MEDLINE | ID: mdl-29405987

ABSTRACT

Urinary creatinine concentration is a critical physiological parameter that enables reliable assessment of patient renal function and diagnosis of a broad spectrum of diseases. In this study, a simple and inexpensive sensor comprising monodisperse, citrate-capped silver nanoparticles (cc-AgNPs) was developed, which enabled rapid, sensitive and selective quantitation of creatinine directly in unprocessed urine. The mechanism of this sensor entails the creatinine-mediated aggregation of the cc-AgNPs (within 1 min) under alkaline conditions (pH 12). This is attributed to the tautomerization of creatinine to its amino anionic species at alkaline pH, which cross-link the cc-AgNPs via hydrogen bond networks with the negatively charged citrate caps. Creatinine elicited visibly-discernable color changes of the cc-AgNPs colloids in a concentration-dependent manner up to 10 µM. UV-visible spectroscopic analyses of the cc-AgNPs revealed that creatinine elicited a concentration-dependent decrease in intensity of the localized surface plasmon resonance (LSPR) band centered around 403 nm, with a concomitant increase in intensity of the red-shifted LSPR band at 670 nm. This observation denotes a creatinine-mediated increase in cc-AgNP particle size via aggregation, as confirmed by transmission electron microscopy analysis. The cc-AgNP sensor exhibited a linear correlation between the A670/A403 extinction ratio and creatinine concentration range of 0-4.2 µM in aqueous solutions (R2 = 0.996), and a low detection limit of 53.4 nM. Hence, the simplicity, short assay time, and high sensitivity and selectivity of our cc-AgNP sensor affirms its utility as a creatinine monitoring assay for low-resource, point-of-care settings.


Subject(s)
Citric Acid/chemistry , Colorimetry , Creatinine/urine , Fluorescent Dyes/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Humans , Hydrogen-Ion Concentration , Particle Size , Spectrophotometry, Ultraviolet , Surface Plasmon Resonance , Surface Properties
8.
Talanta ; 130: 55-62, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25159379

ABSTRACT

In this study, silver nanostructures decorated magnetic nanoparticles for surface-enhanced Raman scattering (SERS) measurements were prepared via photoreduction utilizing the catalytic activity of ZnO nanostructure. The ZnO/Fe3O4 composite was first prepared by dispersing pre-formed magnetic nanoparticles into alkaline zinc nitrate solutions. After annealing of the precipitates, the formed ZnO/Fe3O4 composites were successfully decorated with silver nanostructures by soaking the composites into silver nitrate/ethylene glycol solution following UV irradiations. To find the optimal condition when preparing Ag@ZnO/Fe3O4 composites for SERS measurements, factors such as the reaction conditions, photoreduction time, concentration of zinc nitrate and silver nitrate were studied. Results indicated that the photoreduction efficiency was significantly improved with the assistance of ZnO but the amount of ZnO in the composite is not critical. The concentration of silver nitrate and UV irradiation time affected the morphologies of the formed composites and optimal condition in preparation of the composites for SERS measurement was found using 20mM of silver nitrate with an irradiation time of 90 min. Under the optimized condition, the obtained SERS intensities were highly reproducible with a SERS enhancement factor in the order of 7. Quantitative analyses showed that a linear range up to 1 µM with a detection limit lower than 0.1 µM in the detection of creatinine in aqueous solution could be obtained. Successful applying of these prepared composites to determine creatinine in urine sample was obtained.


Subject(s)
Creatinine/urine , Magnetics , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Photochemistry , Silver Compounds/chemistry , Spectrum Analysis, Raman/methods , Ferric Compounds/chemistry , Humans , Surface Properties , Zinc Oxide/chemistry
9.
Anal Chim Acta ; 812: 114-20, 2014 Feb 17.
Article in English | MEDLINE | ID: mdl-24491771

ABSTRACT

In this work, silver nanoparticles (AgNPs) decorated magnetic microspheres (MMs) are prepared as surface-enhanced Raman scattering (SERS) substrate for the analysis of adenine in aqueous solutions. To prepare these substrates, magnetic particles were first synthesized by coprecipitation of Fe(II) and Fe(III) with ammonium hydroxide. A thin layer of cross-linked polymer was formed on these magnetic particles by polymerization through suspension of magnetic particles into a solution of divinyl benzene/methyl methacrylate. The resulted polymer protected magnetic particles are round in shape with a size of 80 µm in diameter. To form AgNPs on these MMs, photochemical reduction method was employed and the factors in photochemical reduction method were studied and optimized for the preparation of highly sensitive and stable AgNPs on MMs substrates (abbreviated as AgMMs substrates). By dispersing the AgMMs in aqueous samples, cylindrical magnet was used to attract the AgMMs for SERS detections. The observed enhancement factor of AgMMs reached 7 orders in magnitude for detection of adenine with a detection limit approaching to few hundreds of nanomolar.


Subject(s)
Adenine/analysis , Magnetics , Metal Nanoparticles , Microspheres , Silver/chemistry , Spectrum Analysis, Raman/methods , Limit of Detection , Microscopy, Electron, Scanning , Spectrophotometry, Infrared , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...