Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Curr Microbiol ; 81(9): 273, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017960

ABSTRACT

In pharmaceutical manufacturing, ensuring product safety involves the detection and identification of microorganisms with human pathogenic potential, including Burkholderia cepacia complex (BCC), Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus, Clostridium sporogenes, Candida albicans, and Mycoplasma spp., some of which may be missed or not identified by traditional culture-dependent methods. In this study, we employed a metagenomic approach to detect these taxa, avoiding the limitations of conventional cultivation methods. We assessed the groundwater microbiome's taxonomic and functional features from samples collected at two locations in the spring and summer. All datasets comprised 436-557 genera with Proteobacteria, Bacteroidota, Firmicutes, Actinobacteria, and Cyanobacteria accounting for > 95% of microbial DNA sequences. The aforementioned species constituted less than 18.3% of relative abundance. Escherichia and Salmonella were mainly detected in Hot Springs, relative to Jefferson, while Clostridium and Pseudomonas were mainly found in Jefferson relative to Hot Springs. Multidrug resistance efflux pumps and BlaR1 family regulatory sensor-transducer disambiguation dominated in Hot Springs and in Jefferson. These initial results provide insight into the detection of specified microorganisms and could constitute a framework for the establishment of comprehensive metagenomic analysis for the microbiological evaluation of pharmaceutical-grade water and other non-sterile pharmaceutical products, ensuring public safety.


Subject(s)
Bacteria , Groundwater , Metagenomics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Groundwater/microbiology , Microbiota/genetics , Pharmaceutical Preparations , Metagenome , Water Microbiology
2.
Front Microbiol ; 15: 1342478, 2024.
Article in English | MEDLINE | ID: mdl-38435692

ABSTRACT

Salmonella spp. is one of the most isolated microorganisms reported to be responsible for human foodborne diseases and death. Water constitutes a major reservoir where the Salmonella spp. can persist and go undetected when present in low numbers. In this study, we assessed the viability of 12 serotypes of Salmonella enterica subsp. enterica for 160 days in nuclease-free water at 4 and 25°C using flow cytometry and Tryptic Soy Agar (TSA) plate counts. The results show that all 12 serotypes remain viable after 160 days in distilled water using flow cytometry, whereas traditional plate counts failed to detect ten serotypes incubated at 25°C. Moreover, the findings demonstrate that 4°C constitutes a more favorable environment where Salmonella can remain viable for prolonged periods without nutrients. Under such conditions, however, Salmonella exhibits a higher susceptibility to all tested antibiotics and benzalkonium chloride (BZK). The pre-enrichment with Universal Pre-enrichment Broth (UP) and 1/10 × Tryptic Soy broth (1/10 × TSB) resuscitated all tested serotypes on TSA plates, nevertheless cell size decreased after 160 days. Furthermore, phenotype microarray (PM) analysis of S. Inverness and S. Enteritidis combined with principal component analysis (PCA) revealed an inter-individual variability in serotypes with their phenotype characteristics, and the impact of long-term storage at 4 and 25°C for 160 days in nuclease-free water. This study provides an insight to Salmonella spp. long-term survivability at different temperatures and highlights the need for powerful tools to detect this microorganism to reduce the risk of disease transmission of foodborne pathogens via nuclease-free water.

3.
Microorganisms ; 10(6)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35744688

ABSTRACT

Burkholderia cepacia complex (BCC) contamination has resulted in recalls of non-sterile pharmaceutical products. The fast, sensitive, and specific detection of BCC is critical for ensuring the quality and safety of pharmaceutical products. In this study, a rapid flow cytometry-based detection method was developed using a fluorescence-labeled oligonucleotide Kef probe that specifically binds a KefB/KefC membrane protein sequence within BCC. Optimal conditions of a 1 nM Kef probe concentration at a 60 °C hybridization temperature for 30 min were determined and applied for the flow cytometry assay. The true-positive rate (sensitivity) and true-negative rate (specificity) of the Kef probe assay were 90% (18 positive out of 20 BCC species) and 88.9% (16 negative out of 18 non-BCC), respectively. The detection limit for B. cenocepacia AU1054 with the Kef probe flow cytometry assay in nuclease-free water was 1 CFU/mL. The average cell counts using the Kef probe assay from a concentration of 10 µg/mL chlorhexidine gluconate and 50 µg/mL benzalkonium chloride were similar to those of the RAPID-B total plate count (TPC). We demonstrate the potential of Kef probe flow cytometry as a more sensitive alternative to culture-based methods for detecting BCC in non-sterilized pharmaceutical raw materials and products with regards to water-based environments.

4.
J Ind Microbiol Biotechnol ; 47(6-7): 475-484, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32671501

ABSTRACT

The presence of Burkholderia cepacia complex (BCC) strains has resulted in recalls of pharmaceutical products, since these opportunistic pathogens can cause serious infections. Rapid and sensitive diagnostic methods to detect BCC are crucial to determine contamination levels. We evaluated bacterial cultures, real-time PCR (qPCR), droplet digital PCR (ddPCR), and flow cytometry to detect BCC in nuclease-free water, in chlorhexidine gluconate (CHX) and benzalkonium chloride (BZK) solutions. Twenty BCC strains were each suspended (1, 10, 100, and 1000 CFU/ml) in autoclaved nuclease-free water, 10 µg/ml CHX, and 50 µg/ml BZK. Five replicates of each strain were tested at each concentration (20 strains × 4 concentrations × 5 replicates = 400 tests) to detect BCC using the aforementioned four methods. We demonstrated the potential of ddPCR and flow cytometry as more sensitive alternatives to culture-based methods to detect BCC in autoclaved nuclease-free water and antiseptics samples.


Subject(s)
Anti-Infective Agents, Local/pharmacology , Burkholderia cepacia complex , Drug Contamination , Flow Cytometry , Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction , Benzalkonium Compounds , Biotechnology , Chlorhexidine/analogs & derivatives , Culture , Water
5.
Anal Chem ; 91(7): 4405-4412, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30835114

ABSTRACT

Conventional signal-based microanalytical techniques for estimating bacterial concentrations are often susceptible to false signals. A visual quantification, therefore, may compliment such techniques by providing additional information and support better management decisions in the event of outbreaks. Herein, we explore a method that combines electron microscopy (EM) and image-analysis techniques and allows both visualization and quantification of pathogenic bacteria adherent even to complex nonuniform substrates. Both the estimation and imaging parameters were optimized to reduce the estimation error ( E, %) to close to ±5%. The method was validated against conventional microbiological techniques such as the use of optical density, flow cytometry, and quantitative real-time PCR (qPCR). It could easily be tailored to estimate different species of pathogens, such as Escherichia coli O157, Listeria innocua, Staphylococcus aureus, Enterococcus faecalis, and Bacillus anthracis, on samples similar to those in real-time contamination scenarios. The present method is sensitive enough to detect ∼100 bacterial CFU/mL but has the potential to estimate even lower concentrations with increased imaging and computation times. Overall, this imaging-based method may greatly complement any signal-based pathogen-detection technique, especially in negating false signals, and therefore may significantly contribute to the field of analytical microbiology and biochemistry.


Subject(s)
Bacteria/isolation & purification , Cell Count/methods , Manufactured Materials/microbiology , Animals , Bandages/microbiology , Cattle , Food Contamination/analysis , Image Processing, Computer-Assisted , Limit of Detection , Microscopy, Electron, Scanning , Nylons/chemistry , Polypropylenes/chemistry , Red Meat/microbiology
6.
Front Microbiol ; 8: 1493, 2017.
Article in English | MEDLINE | ID: mdl-28855894

ABSTRACT

Very low cell count detection of Escherichia coli O157:H7 in foods is critical, since an infective dose for this pathogen may be only 10 cells, and fewer still for vulnerable populations. A flow cytometer is able to detect and count individual cells of a target bacterium, in this case E. coli O157:H7. The challenge is to find the single cell in a complex matrix like raw spinach. To find that cell requires growing it as quickly as possible to a number sufficiently in excess of matrix background that identification is certain. The experimental design for this work was that of a U.S. Food and Drug Administration (FDA) In-House Level 3 validation executed in the technology's originating laboratory. Using non-selective enrichment broth, 6.5 h incubation at 42°C, centrifugation for target cell concentration, and a highly selective E. coli O157 fluorescent antibody tag, the cytometry method proved more sensitive than a reference regulatory method (p = 0.01) for detecting a single target cell, one E. coli O157:H7 cell, in 25 g of spinach. It counted that cell's daughters with at least 38× signal-to-noise ratio, analyzing 25 samples in total-time-to-results of 9 h.

7.
Rapid Commun Mass Spectrom ; 29(21): 1961-8, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26443394

ABSTRACT

RATIONALE: Rapid sub-species characterization of pathogens is required for timely responses in outbreak situations. Pyrolysis mass spectrometry (PyMS) has the potential to be used for this purpose. METHODS: However, in order to make PyMS practical for traceback applications, certain improvements related to spectrum reproducibility and data acquisition speed were required. The main objectives of this study were to facilitate fast detection (<30 min to analyze 6 samples, including preparation) and sub-species-level bacterial characterization based on pattern recognition of mass spectral fingerprints acquired from whole cells volatilized and ionized at atmospheric pressure. An AccuTOF DART mass spectrometer was re-engineered to permit ionization of low-volatility bacteria by means of Plasma Jet Ionization (PJI), in which an electric discharge, and, by extension, a plasma beam, impinges on sample cells. RESULTS: Instrumental improvements and spectral acquisition methodology are described. Performance of the re-engineered system was assessed using a small challenge set comprised of assorted bacterial isolates differing in identity by varying amounts. In general, the spectral patterns obtained allowed differentiation of all samples tested, including those of the same genus and species but different serotypes. CONCLUSIONS: Fluctuations of ±15% in bacterial cell concentrations did not substantially compromise replicate spectra reproducibility.


Subject(s)
Bacteria/isolation & purification , Bacterial Typing Techniques/methods , Mass Spectrometry/methods , Bacteria/chemistry , Bacteria/classification , Bacterial Typing Techniques/economics , Bacterial Typing Techniques/instrumentation , Mass Spectrometry/economics , Mass Spectrometry/instrumentation , Reproducibility of Results , Specimen Handling
8.
Int J Food Microbiol ; 215: 1-6, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26318407

ABSTRACT

The Bacteriological Analytical Manual (BAM) method currently used by the United States Food and Drug Administration (FDA) to detect Escherichia coli O157:H7 in spinach was systematically compared to a new flow cytometry based method. This Food and Drug Administration (FDA) level 2 external laboratory validation study was designed to determine the latter method's sensitivity and speed for analysis of this pathogen in raw spinach. Detection of target cell inoculations with a low cell count is critical, since enterohemorrhagic strains of E. coli require an infective dose of as few as 10 cells (Schmid-Hempel and Frank, 2007). Although, according to the FDA, the infectious dose is unknown (Food and Drug Administration, 1993). Therefore, the inoculation level into the spinach, a total of 2.0±2.6 viable E. coli O157 cells, was specified to yield between 25% and 75% detection by the new method, out of 20 samples (10 positives and 10 negatives). This criterion was met in that the new method detected 60% of the nominally positive samples; the corresponding sensitivity of the reference method was 50%. For both methods the most likely explanation for false negatives was that no viable cells were actually introduced into the sample. In this validation study, the flow cytometry method was equal to the BAM in sensitivity and far superior in speed.


Subject(s)
Escherichia coli O157/isolation & purification , Flow Cytometry/standards , Food Microbiology/methods , Spinacia oleracea/microbiology , United States , United States Food and Drug Administration
9.
Rapid Commun Mass Spectrom ; 28(23): 2617-26, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25366408

ABSTRACT

RATIONALE: The identification of bacteria based on mass spectra produced by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has become routine since its introduction in 1996. The major drawback is that bacterial patterns produced by MALDI are dependent on sample preparation prior to analysis. This results in poor reproducibility in identifying bacterial types and between laboratories. The need for a more broadly applicable and useful sample handling procedure is warranted. METHODS: Thymol was added to the suspension solvent of bacteria prior to MALDI analysis. The suspension solvent consisted of ethanol, water and TFA. The bacterium was added to the thymol suspension solvent and heated. An aliquot of the bacterial suspension was mixed directly with the matrix solution at a 9:1 ratio, matrix/bacteria solution, respectively. The mixture was then placed on the MALDI plate and allowed to air dry before MALDI analysis. RESULTS: The thymol method improved the quality of spectra and number of peaks when compared to other sample preparation procedures studied. The bacterium-identifying biomarkers assigned to four strains of E. coli were statistically 95% reproducible analyzed on three separate days. The thymol method successfully differentiated between the four E. coli strains. In addition, the thymol procedure could identify nine out of ten S. enterica serovars over a 3-day period and nine S. Typhimurium strains from the other ten serovars 90% of the time over the same period. CONCLUSIONS: The thymol method can identify certain bacteria at the sub-species level and yield reproducible results over time. It improves the quality of spectra by increasing the number of peaks when compared to the other sample preparation methods assessed in this study. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Bacteria/chemistry , Bacteria/classification , Bacterial Typing Techniques/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Thymol/chemistry , Biomarkers/analysis , Biomarkers/chemistry , Reproducibility of Results
10.
Glycoconj J ; 30(5): 473-84, 2013 Jul.
Article in English | MEDLINE | ID: mdl-22983705

ABSTRACT

Glycoconjugates (GCs) are recognized as stimulation and signaling agents, affecting cell adhesion, activation, and growth of living organisms. Among GC targets, macrophages are considered ideal since they play a central role in inflammation and immune responses against foreign agents. In this context, we studied the effects of highly selective GCs in neutralizing toxin factors produced by B. anthracis during phagocytosis using murine macrophages. The effects of GCs were studied under three conditions: A) prior to, B) during, and C) following exposure of macrophages to B. anthracis individual toxin (protective antigen [PA], edema factor [EF], lethal factor [LF] or toxin complexes (PA-EF-LF, PA-EF, and PA-LF). We employed ex vivo phagocytosis and post-phagocytosis analysis including direct microscopic observation of macrophage viability, and macrophage activation. Our results demonstrated that macrophages are more prone to adhere to GC-altered PA-EF-LF, PA-EF, and PA-LF toxin complexes. This adhesion results in a higher phagocytosis rate and toxin complex neutralization during phagocytosis. In addition, GCs enhance macrophage viability, activate macrophages, and stimulate nitric oxide (NO) production. The present study may be helpful in identifying GC ligands with toxin-neutralizing and/or immunomodulating properties. In addition, our study could suggest GCs as new targets for existing vaccines and the prospective development of vaccines and immunomodulators used to combat the effects of B. anthracis.


Subject(s)
Antigens, Bacterial/pharmacology , Bacterial Toxins/pharmacology , Glycoconjugates/chemistry , Macrophages, Peritoneal/immunology , Phagocytosis/immunology , Polysaccharides/chemistry , Animals , Antigens, Bacterial/chemistry , Bacillus anthracis/chemistry , Bacterial Toxins/chemistry , Cell Adhesion/drug effects , Cell Survival/drug effects , Cells, Cultured , Macrophage Activation/drug effects , Macrophages, Peritoneal/cytology , Macrophages, Peritoneal/drug effects , Mice , Mice, Inbred C57BL , Nitric Oxide/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology
11.
Glycoconj J ; 29(1): 25-33, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22134879

ABSTRACT

Bacillus anthracis toxins may be attenuated if macrophages could neutralize toxins upon contact or exposure. Glycoconjugate-bearing polymers, which have been shown to bind to Bacillus spores, were tested for recognition and binding of protective antigen (PA), lethal factor (LF), and edema factor (EF) toxins. We have demonstrated modulation of macrophage activity following exposure to these toxins. Without glycoconjugate (GC) activation, murine macrophages were killed by Bacillus toxins. GCs were shown to have a protective influence, sparing macrophages from toxin-induced cell death, as shown by increased macrophage cell viability based on trypan blue assay. Increased levels of inducible nitric oxide (NO) production by macrophages in presence of GCs suggest that GCs provide an activation signal for macrophages and stimulate their function. Results hint to GCs that promote neutralization of Bacillus toxins, block toxin-induced macrophage death, while increasing macrophage activation. Polymeric GCs may suggest novel approaches to improve existing or develop new vaccines as well as immunotherapeutics.


Subject(s)
Apoptosis/drug effects , Bacillus anthracis/drug effects , Bacterial Toxins/antagonists & inhibitors , Glycoconjugates/pharmacology , Macrophages/drug effects , Animals , Antigens, Bacterial/toxicity , Bacterial Toxins/toxicity , Cell Survival/drug effects , Cell Survival/immunology , Macrophage Activation/drug effects , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/physiology , Mice , Mice, Inbred C57BL , Nitric Oxide/biosynthesis , Nitric Oxide/immunology , Nitric Oxide/metabolism , Phagocytosis/drug effects , Polymers/chemistry , Polymers/pharmacology
12.
J Magn Reson Imaging ; 32(4): 818-29, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20882612

ABSTRACT

PURPOSE: To examine preprocessing methods affecting the potential use of Magnetic Resonance Spectroscopy (MRS) as a noninvasive modality for detection and characterization of brain lesions and for directing therapy progress. MATERIALS AND METHODS: Two reference point re-calibration with linear interpolation (to compensate for magnetic field nonhomogeneity), weighting of spectra (to emphasize consistent peaks and depress chemical noise), and modeling based on chemical shift locations of 97 biomarkers were investigated. Results for 139 categorized scans were assessed by comparing Leave-One-Out (LOO) cross-validation and external validation. RESULTS: For distinction of nine brain tissue categories, use of re-calibration, variance weighting, and biomarker modeling improved LOO classification of MRS spectra from 31% to 95%. External validation of the two best nine-category models on 47 unknown samples gave 96% or 100% accuracy, respectively, compared with pathological diagnosis. CONCLUSION: Preprocessing of MRS spectra can significantly improve their diagnostic utility for automated consultation of pattern recognition models. Use of several techniques in combination greatly increases available proton MRS information content. Accurate assignment of unknowns among nine tissue classes represents a significant improvement, for a much more demanding task, than has been previously reported.


Subject(s)
Brain Neoplasms/diagnosis , Brain Neoplasms/pathology , Magnetic Resonance Spectroscopy/methods , Medical Oncology/methods , Biomarkers/chemistry , Brain/pathology , Brain Mapping/methods , Calibration , Electronic Data Processing , Humans , Image Processing, Computer-Assisted , Pattern Recognition, Automated , Protons , Reproducibility of Results
13.
Glycoconj J ; 27(1): 13-25, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19548085

ABSTRACT

Nitric oxide (NO) is a signaling and defense molecule of major importance. NO endows macrophages with bactericidal, cytostatic as well as cytotoxic activity against various pathogens. Bacillus spores can produce serious diseases, which might be attenuated if macrophages were able to kill the spores on contact. Present research was carried out to study whether glycoconjugates stimulated NO and nitric oxide synthase (NOS2) production during phagocytosis killing of Bacillus spores. Murine macrophages exposed to glycoconjugate-treated spores induced NOS2 and NO production that was correlated with high viability of macrophages and killing rate of bacterial spores. Increased levels of inducible NOS2 and NO production by macrophages in presence of glycoconjugates suggested that the latter provide an activation signal directed to macrophages. Glycoconjugates were shown to exert a protective influence, sparing macrophages from spore-induced cell death. In presence of glycoconjugates, macrophages efficiently kill the organisms. Without glycoconjugate activation, murine macrophages were ineffective at killing Bacillus spores. These results suggest that glycoconjugates promote killing of Bacillus spores by blocking spore-induced macrophage cell death, while increasing their activation level and NO and NOS2 production. Glycoconjugates suggest novel antimicrobial approaches to prevention and treatment of infection caused by bacterial spores.


Subject(s)
Glycoconjugates/pharmacology , Microbial Viability/drug effects , Nitric Oxide Synthase/metabolism , Nitric Oxide/metabolism , Phagocytosis/drug effects , Spores, Bacterial/cytology , Spores, Bacterial/drug effects , Animals , Cell Survival/drug effects , Cytoprotection/drug effects , Macrophages/cytology , Macrophages/drug effects , Macrophages/enzymology , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Microscopy, Atomic Force , Models, Biological , Nitric Oxide/biosynthesis , Spores, Bacterial/ultrastructure
14.
Carbohydr Res ; 343(13): 2243-50, 2008 Sep 08.
Article in English | MEDLINE | ID: mdl-18490004

ABSTRACT

An estimated $1 billion was lost in decontaminating areas exposed to anthrax in the 2001 attacks. To counter the threat of biological attacks, an effective 'green' decontaminant is vital to minimize the consequences of such attacks. The objective of our research was to study the ability of glycoconjugate ligands to decontaminate Bacillus cereus spores on hard surfaces. Polyvalent glycoconjugates (also known as neoglycoconjugates) were tested during decontamination of B. cereus spores. Resulting colony forming units (CFU) of viable spores were a direct evidence of glycoconjugate decontamination efficacy. Our results indicate a substantial, decreasing CFU count due to defensive and simultaneous actions of glycoconjugates compared to spores only used as controls. Decontamination of B. cereus spores was most efficiently and consistently achieved using Galalpha1-->3GalNAcbeta-PAA-flu glycoconjugate under both defensive and simultaneous conditions. Atomic force microscopy (AFM) allowed us to visualize decontamination at the nanoscale level using glycoconjugates. AFM reveals the size of glycoconjugate agglomerates (clusters) and a noticeably different morphology of glycoconjugate-treated spores during decontamination. Morphological features of untreated spores disappear under a thin layer of glycoconjugate solution. This thin layer is formed due to the defensive action of glycoconjugates. Simultaneous action has shown agglomeration of glycoconjugates in solution with B. cereus spores in glycoconjugate suspensions. Glycoconjugates might be useful for the development of an environment-friendly decontaminant of bacterial spores.


Subject(s)
Bacillus cereus/metabolism , Decontamination/methods , Glycoconjugates/chemistry , Spores, Bacterial/metabolism , Spores, Bacterial/ultrastructure , Anthrax , Carbohydrates/chemistry , Ceramics , Disaccharides/chemistry , Disinfectants/pharmacology , Dose-Response Relationship, Drug , Equipment Contamination , Inhibitory Concentration 50 , Ligands , Microscopy, Atomic Force , Polymers/chemistry
15.
Arch Microbiol ; 189(6): 579-87, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18270686

ABSTRACT

Infections caused by Bacillus spores can be attenuated if the intracellular killing of the organism by macrophages can be enhanced. Glycoconjugate-bearing polymers, which selectively bind to Bacillus spores, were tested for modulation of intracellular killing when added prior to, during, and following macrophage exposure to B. cereus spores. In the absence of glycoconjugates, murine macrophages were ineffective at killing Bacillus spores. In presence of glycoconjugates, however, macrophages efficiently killed spores, whether the glycoconjugates were added to the cells prior to, during, and following spore addition. Glycoconjugates were shown to exert a protective influence on macrophages and increase their activation, as evidenced by viability and lactate dehydrogenase release assays. Increased levels of nitric oxide production by macrophages pretreated with glycoconjugates suggest that, under these conditions, glycoconjugates provide an activation signal to macrophages. These results indicate that glycoconjugates promote killing of Bacillus spores, while increasing macrophage activation level and viability. The selection of glycoconjugate ligands bearing immunomodulating properties could be exploited for vaccine and/or immunomodulator development and/or for the improvement of existing vaccines against B. cereus and B. anthracis.


Subject(s)
Bacillus cereus/immunology , Glycoconjugates/immunology , Macrophage Activation , Macrophages/immunology , Phagocytosis , Spores, Bacterial/immunology , Animals , Bacillus cereus/metabolism , Cell Survival , Female , Glycoconjugates/metabolism , Macrophages/microbiology , Macrophages/physiology , Mice , Mice, Inbred C57BL , Microbial Viability , Spores, Bacterial/metabolism
16.
Glycoconj J ; 25(5): 473-80, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18202914

ABSTRACT

Diseases caused by Bacillus spores might be attenuated if macrophages were able to kill the spores on exposure. Glycoconjugate-bearing polymers, which have been shown to bind to Bacillus spores, were tested for modulation of phagocytosis of B. cereus spores. Without glycoconjugate activation, murine macrophages were ineffective at killing Bacillus spores during phagocytosis. In the presence of glycoconjugates, however, the macrophages efficiently killed the organisms. The glycoconjugates were shown to have a protective influence, sparing macrophages from spore-induced cell death. Very low concentrations of the glycoconjugates prevented macrophage cell death, as shown by lactate dehydrogenase (LDH) release and trypan blue assays. Increased levels of inducible nitric oxide (NO) production by the macrophages in the presence of glycoconjugates suggested that the glycoconjugates provide an activation signal to the macrophages. These results suggest that glycoconjugates promote the killing of Bacillus spores by blocking spore-induced macrophage cell death, while increasing their activation level. Polymeric glycoconjugates may suggest novel approaches to improve existing vaccines as well as prevent and treat infections incurred through either B. cereus or B. anthracis spores.


Subject(s)
Bacillus cereus/cytology , Glycoconjugates/pharmacology , Macrophage Activation/drug effects , Phagocytosis/drug effects , Polymers/pharmacology , Spores, Bacterial/cytology , Animals , Bacillus cereus/drug effects , Cell Survival/drug effects , Glycoconjugates/chemistry , Mice , Mice, Inbred C57BL , Nitric Oxide/biosynthesis , Polymers/chemistry , Spores, Bacterial/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...