Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 87(1): 75, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775958

ABSTRACT

The gut microbiome is a highly intricate ecosystem that exerts a pivotal influence on the host's physiology. Characterizing fish microbiomes is critical to understanding fish physiology and health, but little is known about the ecology and colonization dynamics of microorganisms inhabiting fish species. In this study, we investigated the bacterial communities of two small-bodied fish species, Cyprinella lutrensis (red shiner) and Notropis stramineus (sand shiner), two fish species where gut microbiomes have not been investigated previously and surrounding waters, collected from rivers in Nebraska, USA. Our study focused on evaluating microbial diversity in small-bodied fish and identifying autochthonous microbes present within these species irrespective of location to better understand bacterial community composition and possible roles of such bacterial species. Our results revealed that both red shiner and sand shiner exhibited gut bacterial communities dominated by typical bacterial phyla found in freshwater fish. The phylum Bacteroidota was minimally abundant in both species and significantly lower in relative abundance compared to the surrounding water microbial community. Furthermore, we found that the gut microbiomes of red shiner and sand shiner differed from the microbial community in the surrounding water, suggesting that these fish species contain host-associated bacterial species that may provide benefits to the host such as nutrient digestion and colonization resistance of environmental pathogens. The fish gut bacterial communities were sensitive to environmental conditions such as turbidity, dissolved oxygen, temperature, and total nitrogen. Our findings also show bacterial community differences between fish species; although they shared notable similarities in bacterial taxa at phyla level composition, ASV level analysis of bacterial taxa displayed compositional differences. These findings contribute to a better understanding of the gut bacterial composition of wild, freshwater, small-bodied fish and highlight the influence of intrinsic (host) and environmental factors on shaping the bacterial composition.


Subject(s)
Bacteria , Cyprinidae , Gastrointestinal Microbiome , Rivers , Animals , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Cyprinidae/microbiology , Rivers/microbiology , RNA, Ribosomal, 16S/genetics , Nebraska
2.
Commun Biol ; 3(1): 760, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311550

ABSTRACT

The majority of microbiome studies focused on understanding mechanistic relationships between the host and the microbiota have used mice and other rodents as the model of choice. However, the domestic pig is a relevant model that is currently underutilized for human microbiome investigations. In this study, we performed a direct comparison of the engraftment of fecal bacterial communities from human donors between human microbiota-associated (HMA) piglet and mouse models under identical dietary conditions. Analysis of 16S rRNA genes using amplicon sequence variants (ASVs) revealed that with the exception of early microbiota from infants, the more mature microbiotas tested established better in the HMA piglets compared to HMA mice. Of interest was the greater transplantation success of members belonging to phylum Firmicutes in the HMA piglets compared to the HMA mice. Together, these results provide evidence for the HMA piglet model potentially being more broadly applicable for donors with more mature microbiotas while the HMA mouse model might be more relevant for developing microbiotas such as those of infants. This study also emphasizes the necessity to exercise caution in extrapolating findings from HMA animals to humans, since up to 28% of taxa from some donors failed to colonize either model.


Subject(s)
Feces/microbiology , Gastrointestinal Microbiome , Animals , Bacteria/classification , Bacteria/genetics , Biodiversity , Computational Biology/methods , Disease Models, Animal , Germ-Free Life , Humans , Metagenome , Metagenomics/methods , Mice , Phylogeny , Reproducibility of Results
3.
J Anim Sci ; 97(9): 3741-3757, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31250899

ABSTRACT

A variety of microorganisms inhabit the gastrointestinal tract of animals including bacteria, archaea, fungi, protozoa, and viruses. Pioneers in gut microbiology have stressed the critical importance of diet:microbe interactions and how these interactions may contribute to health status. As scientists have overcome the limitations of culture-based microbiology, the importance of these interactions has become more clear even to the extent that the gut microbiota has emerged as an important immunologic and metabolic organ. Recent advances in metagenomics and metabolomics have helped scientists to demonstrate that interactions among the diet, the gut microbiota, and the host to have profound effects on animal health and disease. However, although scientists have now accumulated a great deal of data with respect to what organisms comprise the gastrointestinal landscape, there is a need to look more closely at causative effects of the microbiome. The objective of this review is intended to provide: 1) a review of what is currently known with respect to the dynamics of microbial colonization of the porcine gastrointestinal tract; 2) a review of the impact of nutrient:microbe effects on growth and health; 3) examples of the therapeutic potential of prebiotics, probiotics, and synbiotics; and 4) a discussion about what the future holds with respect to microbiome research opportunities and challenges. Taken together, by considering what is currently known in the four aforementioned areas, our overarching goal is to set the stage for narrowing the path towards discovering how the porcine gut microbiota (individually and collectively) may affect specific host phenotypes.


Subject(s)
Gastrointestinal Microbiome , Prebiotics , Probiotics , Swine/microbiology , Synbiotics , Animals , Diet/veterinary , Gastrointestinal Tract/microbiology , Metabolomics , Swine/growth & development , Swine/physiology
4.
mBio ; 10(1)2019 02 19.
Article in English | MEDLINE | ID: mdl-30782659

ABSTRACT

Nearly all cervical cancers are causally associated with human papillomavirus (HPV). The burden of HPV-associated dysplasias in sub-Saharan Africa is influenced by HIV. To investigate the role of the bacterial microbiome in cervical dysplasia, cytobrush samples were collected directly from cervical lesions of 144 Tanzanian women. The V4 hypervariable region of the 16S rRNA gene was amplified and deep sequenced. Alpha diversity metrics (Chao1, PD whole tree, and operational taxonomic unit [OTU] estimates) displayed significantly higher bacterial richness in HIV-positive patients (P = 0.01) than in HIV-negative patients. In HIV-positive patients, there was higher bacterial richness in patients with high-grade squamous intraepithelial lesions (HSIL) (P = 0.13) than those without lesions. The most abundant OTUs associated with high-grade squamous intraepithelial lesions were Mycoplasmatales, Pseudomonadales, and Staphylococcus We suggest that a chronic mycoplasma infection of the cervix may contribute to HPV-dependent dysplasia by sustained inflammatory signals.IMPORTANCE HPV is known to be the causal agent in the majority of cervical cancers. However, the role of the cervical bacterial microbiome in cervical cancer is not clear. To investigate that possibility, we collected cervical cytobrush samples from 144 Tanzanian women and performed deep sequencing of bacterial 16S rRNA genes. We found that HIV-positive patients had greater bacterial richness (P = 0.01) than HIV-negative patients. We also observed that women with high-grade squamous intraepithelial lesions (HSIL) had greater cervical bacterial diversity than women with cytologically normal cervices. Data from our precise sampling of cervical lesions leads us to propose that Mycoplasma contributes to a cervical microbiome status that promotes HPV-related cervical lesions. These results suggest a greater influence of the bacterial microbiota on the outcome of HPV infection than previously thought.


Subject(s)
Bacteria/classification , Cervix Uteri/microbiology , Cervix Uteri/pathology , HIV Infections/complications , Microbiota , Precancerous Conditions/epidemiology , Uterine Cervical Neoplasms/epidemiology , Bacteria/genetics , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Metagenomics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Tanzania/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...