Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-28752081

ABSTRACT

Human Campylobacter jejuni-infections are progressively increasing worldwide. Despite their high prevalence and socioeconomic impact the underlying mechanisms of pathogen-host-interactions are only incompletely understood. Given that the innate immune receptor nucleotide-oligomerization-domain-2 (Nod2) is involved in clearance of enteropathogens, we here evaluated its role in murine campylobacteriosis. To address this, we applied Nod2-deficient IL-10-/- (Nod2-/- IL-10-/-) mice and IL-10-/- counterparts both with a depleted intestinal microbiota to warrant pathogen-induced enterocolitis. At day 7 following peroral C. jejuni strain 81-176 infection, Nod2 mRNA was down-regulated in the colon of secondary abiotic IL-10-/- and wildtype mice. Nod2-deficiency did neither affect gastrointestinal colonization nor extra-intestinal and systemic translocation properties of C. jejuni. Colonic mucin-2 mRNA was, however, down-regulated upon C. jejuni-infection of both Nod2-/- IL-10-/- and IL-10-/- mice, whereas expression levels were lower in infected, but also naive Nod2-/- IL-10-/- mice as compared to respective IL-10-/- controls. Remarkably, C. jejuni-infected Nod2-/- IL-10-/- mice were less compromised than IL-10-/- counterparts and displayed less distinct apoptotic, but higher regenerative cell responses in colonic epithelia. Conversely, innate as well as adaptive immune cells such as macrophages and monocytes as well as T lymphocytes and regulatory T-cells, respectively, were even more abundant in large intestines of Nod2-/- IL-10-/- as compared to IL-10-/- mice at day 7 post-infection. Furthermore, IFN-γ concentrations were higher in ex vivo biopsies derived from intestinal compartments including colon and mesenteric lymph nodes as well as in systemic tissue sites such as the spleen of C. jejuni infected Nod2-/- IL-10-/- as compared to IL10-/- counterparts. Whereas, at day 7 postinfection anti-inflammatory IL-22 mRNA levels were up-regulated, IL-18 mRNA was down-regulated in large intestines of Nod2-/- IL-10-/- vs. IL-10-/- mice. In summary, C. jejuni-infection induced less clinical signs and apoptosis, but more distinct colonic pro- and (of note) anti-inflammatory immune as well as regenerative cell responses in Nod2 deficient IL-10-/- as compared to IL-10-/- control mice. We conclude that, even though colonic Nod2 mRNA was down-regulated upon pathogenic challenge, Nod2-signaling is essentially involved in the well-balanced innate and adaptive immune responses upon C. jejuni-infection of secondary abiotic IL-10-/- mice, but does neither impact pathogenic colonization nor translocation.


Subject(s)
Campylobacter Infections/genetics , Campylobacter Infections/immunology , Campylobacter jejuni/physiology , Interleukin-10/deficiency , Nod2 Signaling Adaptor Protein/deficiency , Animals , Apoptosis , Campylobacter Infections/microbiology , Campylobacter Infections/physiopathology , Campylobacter jejuni/genetics , Female , Humans , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-18/genetics , Interleukin-18/immunology , Interleukins/genetics , Interleukins/immunology , Intestines/immunology , Intestines/microbiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/immunology , Interleukin-22
2.
Eur J Microbiol Immunol (Bp) ; 7(2): 138-145, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28690881

ABSTRACT

Host immune responses are crucial for combating enteropathogenic infections including Campylobacter jejuni. Within 1 week following peroral C. jejuni infection, secondary abiotic IL-10-/- mice develop severe immunopathological sequelae affecting the colon (ulcerative enterocolitis). In the present study, we addressed whether pathogen-induced pro-inflammatory immune responses could also be observed in the small intestines dependent on the innate receptor nucleotide-oligomerization-domain-protein 2 (Nod2). Within 7 days following peroral infection, C. jejuni stably colonized the gastrointestinal tract of both IL-10-/- mice lacking Nod2 (Nod2-/- IL-10-/-) and IL-10-/- controls displaying bloody diarrhea with similar frequencies. Numbers of apoptotic and regenerating epithelial cells increased in the small intestines of C. jejuni-infected mice of either genotype that were accompanied by elevated ileal T and B lymphocyte counts. Notably, ileal T cell numbers were higher in C. jejuni-infected Nod2-/- IL-10-/- as compared to IL-10-/- counterparts. Furthermore, multifold increased concentrations of pro-inflammatory cytokines including IFN-γ, TNF, and MCP-1 could be measured in small intestinal ex vivo biopsies derived from C. jejuni-infected mice of either genotype. In conclusion, C. jejuni-induced pro-inflammatory immune responses affected the small intestines of both Nod2-/- IL-10-/- and IL-10-/- mice, whereas ileal T lymphocyte numbers were even higher in the former.

3.
Gut Pathog ; 9: 33, 2017.
Article in English | MEDLINE | ID: mdl-28592996

ABSTRACT

BACKGROUND: Campylobacter jejuni infections are of rising importance worldwide. Given that innate immune receptors including nucleotide-oligomerization-domain-2 (Nod2) are essentially involved in combating enteropathogenic infections, we here surveyed the impact of Nod2 in murine campylobacteriosis. METHODS AND RESULTS: In order to overcome physiological colonization resistance preventing from C. jejuni infection, we generated secondary abiotic Nod2-/- and wildtype (WT) mice by broad-spectrum antibiotic treatment. Mice were then perorally infected with C. jejuni strain 81-176 on 2 consecutive days and could be stably colonized by the pathogen at high loads. Notably, Nod2 deficiency did not affect gastrointestinal colonization properties of C. jejuni. Despite high intestinal pathogenic burdens mice were virtually uncompromised and exhibited fecal blood in single cases only. At day 7 postinfection (p.i.) similar increases in numbers of colonic epithelial apoptotic cells could be observed in mice of either genotype, whereas C. jejuni infected Nod2-/- mice displayed more distinct regenerative properties in the colon than WT controls. C. jejuni infection was accompanied by increases in distinct immune cell populations such as T lymphocytes and regulatory T cells in mice of either genotype. Increases in T lymphocytes, however, were less pronounced in large intestines of Nod2-/- mice at day 7 p.i. when compared to WT mice, whereas colonic numbers of B lymphocytes were elevated in WT controls only upon C. jejuni infection. At day 7 p.i., colonic pro-inflammatory mediators including nitric oxide, TNF, IFN-γ and IL-22 increased more distinctly in Nod2-/- as compared to WT mice, whereas C. jejuni induced IL-23p19 and IL-18 levels were lower in the large intestines of the former. Converse to the colon, however, ileal concentrations of nitric oxide, TNF, IFN-γ, IL-6 and IL-10 were lower in Nod2-/- as compared to WT mice at day 7 p.i. Even though MUC2 was down-regulated in C. jejuni infected Nod2-/- mice, this did not result in increased pathogenic translocation from the intestinal tract to extra-intestinal compartments. CONCLUSION: In secondary abiotic mice, Nod2 signaling is involved in the orchestrated host immune responses upon C. jejuni infection, but does not control pathogen loads in the gastrointestinal tract.

4.
Eur J Microbiol Immunol (Bp) ; 7(1): 1-14, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28386467

ABSTRACT

Host immune responses are pivotal for combating enteropathogenic infections. We here assessed the impact of the innate receptor nucleotide oligomerization domain protein 2 (NOD2) in murine Campylobacter jejuni-infection. Conventionally colonized IL-10-/- mice lacking NOD2 and IL-10-/- controls were perorally challenged with C. jejuni strain 81-176 and displayed comparable pathogenic colonization of intestines until day 14 postinfection (p.i.). Whereas overall intestinal microbiota compositions were comparable in naive mice, NOD2-/- IL-10-/- mice exhibited less fecal bifidobacteria and lactobacilli than IL-10-/- counterparts after infection. Interestingly, NOD2-/- IL-10-/- mice were clinically more compromised during the early phase of infection, whereas, conversely, IL-10-/- animals exhibited more frequently bloody feces lateron. While colonic apoptotic cell and T lymphocyte numbers were comparable in either C. jejuni-infected mice, B lymphocytes were lower in the colon of infected NOD2-/- IL-10-/- mice versus controls. At day 14 p.i., colonic TNF and IL-23p19 mRNA levels were upregulated in NOD2-/- IL-10-/- mice only. Translocation rates of intestinal commensals to mesenteric lymphnodes and extra-intestinal compartments including liver and kidney were comparable, whereas viable bacteria were more frequently detected in spleens derived from IL-10-/- as compared to NOD2-/- IL-10-/- mice. In conclusion, NOD2 is involved during C. jejuni infection in conventionally colonized IL-10-/- mice in a time-dependent manner.

5.
Gut Pathog ; 9: 5, 2017.
Article in English | MEDLINE | ID: mdl-28127403

ABSTRACT

BACKGROUND: The nucleotide-binding oligomerisaton protein 2 (NOD2) constitutes a pivotal sensor of bacterial muramyl dipeptide and assures expression of distinct antimicrobial peptides and mediators produced by enterocytes and immune cells directed against pathogens including Campylobacter jejuni. We here elucidated the role of NOD2 during murine C. jejuni infection in more detail. RESULTS: Conventionally colonized NOD2 deficient (NOD2-/-) mice and corresponding wildtype (WT) counterparts were perorally infected with C. jejuni strain 81-176 on three consecutive days. The pathogen colonized both WT and NOD2-/- mice only sporadically until day 14 post infection (p.i.). However, the slightly higher prevalence of C. jejuni in NOD2-/- mice was accompanied by higher intestinal Escherichia coli loads known to facilitate C. jejuni colonization. Neither overt macroscopic (clinical) nor microscopic sequelae (such as colonic epithelial apoptosis) could be observed upon murine C. jejuni infection of either genotype. Innate immune responses were less distinctly induced in C. jejuni infected NOD2-/- versus WT mice as indicated by lower colonic numbers of neutrophils in the former. Conversely, adaptive immune cell counts including T lymphocytes were higher in large intestines of NOD2-/- as compared to WT mice that were paralleled by increased colonic IL-6 secretion and higher TNF and IL-18 mRNA expression levels in large intestines of the former. Only in NOD2-/- mice, however, colonic IL-22 mRNA expression was down-regulated at day 14 p.i. Whereas viable commensal intestinal bacteria could exclusively be detected in mesenteric lymph nodes and livers of NOD2-/- mice, bacterial translocation rates to kidneys and spleen were NOD2 independent. Notably, large intestinal mRNA expression levels of mucin-2, constituting a pivotal factor involved in epithelial barrier integrity, were comparable in naive and C. jejuni infected mice of either genotype. CONCLUSION: NOD2 is involved in the well-balanced regulation of innate and adaptive pro-inflammatory immune responses of conventional mice upon C. jejuni infection.

6.
Eur J Microbiol Immunol (Bp) ; 6(2): 137-46, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27429796

ABSTRACT

Within 1 week following peroral Campylobacter jejuni infection, infant mice develop acute enteritis resolving thereafter. We here assessed colonic expression profiles of mediators belonging to the IL-23/IL-22/IL-18 axis and of matrix-degrading gelatinases MMP-2 and MMP-9 at day 6 post C. jejuni strain 81-176 infection. Whereas the pathogen readily colonized the intestines of infant IL-18(-/-) mice only, colonic mucin-2 mRNA, a pivotal mucus constituent, was downregulated in IL-22(-/-) mice and accompanied by increased expression of pro-inflammatory cytokines including IFN-γ, TNF, IL-17A, and IL-1ß. Furthermore, in both naive and infected IL-22(-/-) mice, colonic expression of IL-23p19 and IL-18 was lower as compared to wildtype mice, whereas, conversely, colonic IL-22 mRNA levels were lower in IL-18(-/-) and colonic IL-18 expression lower in IL-23p19(-/-) as compared to wildtype mice. Moreover, colonic expression of MMP-2 and MMP-9 and their endogenous inhibitor TIMP-1 were lower in IL-22(-/-) as compared to wildtype mice at day 6 postinfection. In conclusion, mediators belonging of the IL-23/IL-22/IL-18 axis as well as the gelatinases MMP-2 and MMP-9 are involved in mediating campylobacteriosis of infant mice in a differentially regulated fashion.

7.
Eur J Microbiol Immunol (Bp) ; 6(2): 124-36, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27429795

ABSTRACT

We have recently shown that, within 1 week following peroral Campylobacter jejuni infection, conventional infant mice develop self-limiting enteritis. We here investigated the role of IL-23, IL-22, and IL-18 during C. jejuni strain 81-176 infection of infant mice. The pathogen efficiently colonized the intestines of IL-18(-/-) mice only, but did not translocate to extra-intestinal compartments. At day 13 postinfection (p.i.), IL-22(-/-) mice displayed lower colonic epithelial apoptotic cell numbers as compared to wildtype mice, whereas, conversely, colonic proliferating cells increased in infected IL-22(-/-) and IL-18(-/-) mice. At day 6 p.i., increases in neutrophils, T and B lymphocytes were less pronounced in gene-deficient mice, whereas regulatory T cell numbers were lower in IL-23p19(-/-) and IL-22(-/-) as compared to wildtype mice, which was accompanied by increased colonic IL-10 levels in the latter. Until then, colonic pro-inflammatory cytokines including TNF, IFN-γ, IL-6, and MCP-1 increased in IL-23p19(-/-) mice, whereas IL-18(-/-) mice exhibited decreased cytokine levels and lower colonic numbers of T and B cell as well as of neutrophils, macrophages, and monocytes as compared to wildtype controls. In conclusion, IL-23, IL-22, and IL-18 are differentially involved in mediating C. jejuni-induced immunopathology of conventional infant mice.

8.
Gut Pathog ; 8: 21, 2016.
Article in English | MEDLINE | ID: mdl-27385977

ABSTRACT

BACKGROUND: Human Campylobacter jejuni infections are worldwide on the rise. Information about the distinct molecular mechanisms underlying campylobacteriosis, however, are scarce. In the present study we investigated whether cytokines including IL-23, IL-22 and IL-18 sharing pivotal functions in host immunity were involved in mediating immunopathological responses upon C. jejuni infection. RESULTS: To address this, conventionally colonized IL-23p19(-/-), IL-22(-/-) and IL-18(-/-) mice were perorally infected with C. jejuni strain ATCC 43431. Respective gene-deficient, but not wildtype mice were susceptible to C. jejuni infection and could be readily colonized with highest pathogenic loads in the terminal ileum and colon at day 14 postinfection (p.i.). In IL-23p19(-/-), IL-22(-/-) and IL-18(-/-) mice viable C. jejuni were detected in MLNs, but did not translocate to spleen, liver, kidney and blood in the majority of cases. Susceptible IL-22(-/-), but neither IL-23p19(-/-), nor IL-18(-/-) mice harbored higher intestinal commensal E. coli loads when compared to resistant wildtype mice. Alike C. jejuni, commensal E. coli did not translocate from the intestinal to extra-intestinal tissue sites. Despite C. jejuni infection, mice lacking IL-23p19, IL-22 or IL-18 exhibited less apoptotic cells, but higher numbers of proliferating cells in their colonic epithelium as compared to wildtype mice at day 14 p.i. Less pronounced apoptosis was parallelled by lower abundance of neutrophils within the colonic mucosa and lamina propria of infected IL-23p19(-/-) and IL-22(-/-) as compared to wildtype control mice, whereas less distinct colonic TNF secretion could be measured in IL-22(-/-) and IL-18(-/-) than in wildtype mice at day 14 p.i. Notably, in infected IL-22(-/-) mice, colonic IL-23p19 mRNA levels were lower, whereas the other way round, colonic IL-22 expression rates were lower in IL-23p19(-/-) mice as compared to wildtype controls. Moreover, IL-18 mRNA was less distinctly expressed in large intestines of naive and infected IL-22(-/-) mice, but not vice versa, given that IL-22 mRNA levels did not differ between in IL-18(-/-) and wildtype mice. CONCLUSION: Cytokines belonging to the IL-23/IL-22/IL-18 axis mediate immunopathological responses upon murine C. jejuni infection in a differentially orchestrated manner. Future studies need to further unravel the underlying regulatory mechanisms orchestrating pathogenic-host interaction.

9.
PLoS One ; 11(6): e0158020, 2016.
Article in English | MEDLINE | ID: mdl-27322540

ABSTRACT

BACKGROUND: Human Campylobacter jejuni infections are progressively rising worldwide. Information about the molecular mechanisms underlying campylobacteriosis, however, are limited. In the present study we investigated whether cytokines such as IL-23, IL-22 and IL-18, which share pivotal functions in host immunity, were involved in mediating intestinal and systemic immunopathological responses upon C. jejuni infection. METHODOLOGY/PRINCIPAL FINDINGS: To assure stable infection, gnotobiotic (i.e. secondary abiotic) IL-23p19-/-, IL-22-/- and IL-18-/- mice were generated by broad-spectrum antibiotic treatment. Following peroral C. jejuni strain 81-176 infection, mice of all genotypes harbored comparably high pathogenic loads in their intestines. As compared to wildtype controls, however, IL-18-/- mice displayed less distinct C. jejuni induced sequelae as indicated by less pronounced large intestinal shrinkage and lower numbers of apoptotic cells in the colonic epithelial layer at day 8 postinfection (p.i.). Furthermore, lower colonic numbers of adaptive immune cells including regulatory T cells and B lymphocytes were accompanied by less distinct secretion of pro-inflammatory cytokines such as TNF and IFN-γ and lower IL-17A mRNA expression levels in colonic ex vivo biopsies of infected IL-18-/- as compared to wildtype mice. Upon C. jejuni infection, colonic IL-23p19 expression was up-regulated in IL-18-/- mice only, whereas IL-22 mRNA levels were lower in uninfected and infected IL-23p19-/- as well as infected IL-18-/- as compared to respective wildtype control mice. Remarkably, not only intestinal, but also systemic infection-induced immune responses were less pronounced in IL-18-/- mice as indicated by lower TNF, IFN-γ and IL-6 serum levels as compared to wildtype mice. CONCLUSION/SIGNIFICANCE: We here show for the first time that IL-18 is essentially involved in mediating C. jejuni infection in the gnotobiotic mouse model. Future studies need to further unravel the underlying regulatory mechanisms orchestrating pathogen-host interaction.


Subject(s)
Campylobacter Infections/immunology , Campylobacter jejuni/immunology , Germ-Free Life/immunology , Interleukin-18/metabolism , Animals , Apoptosis , Bacterial Load/immunology , Bacterial Translocation , Biopsy , Campylobacter Infections/genetics , Campylobacter Infections/pathology , Campylobacter jejuni/growth & development , Cell Proliferation , Colony Count, Microbial , Female , Gene Expression Regulation , Inflammation Mediators/metabolism , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-23 Subunit p19/metabolism , Interleukins/metabolism , Intestinal Mucosa/pathology , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Interleukin-22
10.
Eur J Microbiol Immunol (Bp) ; 5(4): 256-67, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26716014

ABSTRACT

Matrix metalloproteinases (MMP)-2 and -9 (also referred to gelatinases-A and -B, respectively) are upregulated in the inflamed gut of mice and men. We recently demonstrated that synthetic gelatinase blockage reduced large intestinal pro-inflammatory immune responses and apoptosis following murine Campylobacter (C.) jejuni infection. In order to address which gelatinase mediates C. jejuni-induced immune responses, gnotobiotic MMP-2(-/-), MMP-9(-/-), and wildtype (WT) mice were generated by broadspectrum antibiotic treatment and perorally infected with C. jejuni strain 81-176. The pathogen stably colonized the murine intestinal tract irrespective of the genotype but did not translocate to extra-intestinal compartments. At days 8 and 14 postinfection (p.i.), less pronounced colonic histopathological changes were observed in infected MMP-2(-/-) mice, less distinct epithelial apoptosis, but more epithelial proliferation in both MMP-2(-/-) and MMP-9(-/-) mice, as compared to WT controls. Reduced immune responses in gelatinase-deficient mice were characterized by lower numbers of effector as well as innate and adaptive immune cells within the colonic mucosa and lamina propria. The expression of IL-22, IL-18, IL-17A, and IL-1ß mRNA was higher in the colon of MMP-2(-/-) as compared to WT mice. In conclusion, both MMP-2 and MMP-9 are differentially involved in mediating C. jejuni-induced intestinal immunopathology.

11.
Eur J Microbiol Immunol (Bp) ; 5(3): 188-98, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26495129

ABSTRACT

Increased levels of the matrix metalloproteinases (MMPs)-2 and -9 (also referred to gelatinase-A and -B, respectively) can be detected in the inflamed gut. We have recently shown that synthetic gelatinase blockage reduces colonic apoptosis and pro-inflammatory immune responses following murine Campylobacter (C.) jejuni infection. In order to dissect whether MMP-2 and/or MMP-9 is involved in mediating C. jejuni-induced immune responses, infant MMP-2(-/-), MMP-9(-/-), and wildtype (WT) mice were perorally infected with the C. jejuni strain B2 immediately after weaning. Whereas, at day 2 postinfection (p.i.), fecal C. jejuni B2 loads were comparable in mice of either genotype, mice expelled the pathogen from the intestinal tract until day 4 p.i. Six days p.i., colonic MMP-2 but not MMP-9 mRNA was upregulated in WT mice. Remarkably, infected MMP-2(-/-) mice exhibited less frequent abundance of blood in feces, less distinct colonic histopathology and apoptosis, lower numbers of effector as well as innate and adaptive immune cells within the colonic mucosa, and higher colonic IL-22 mRNA levels as compared to infected WT mice. In conclusion, these results point towards an important role of MMP-2 in mediating C. jejuni-induced intestinal immunopathogenesis.

12.
PLoS One ; 10(9): e0139402, 2015.
Article in English | MEDLINE | ID: mdl-26406497

ABSTRACT

BACKGROUND: The immunopathological impact of human Arcobacter (A.) infections is under current debate. Episodes of gastroenteritis with abdominal pain and acute or prolonged watery diarrhea were reported for A. butzleri infected patients. Whereas adhesive, invasive and cytotoxic capacities have been described for A. butzleri in vitro, only limited information is available about the immunopathogenic potential and mechanisms of infection in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Gnotobiotic IL-10-/- mice were generated by broad-spectrum antibiotic treatment and perorally infected with the A. butzleri strains CCUG 30485 and C1 shown to be invasive in cell culture assays. Bacterial colonization capacities, clinical conditions, intestinal, extra-intestinal and systemic immune responses were monitored at day six and 16 postinfection (p.i.). Despite stable intestinal A. butzleri colonization at high loads, gnotobiotic IL-10-/- mice were virtually unaffected and did not display any overt symptoms at either time point. Notably, A. butzleri infection induced apoptosis of colonic epithelial cells which was paralleled by increased abundance of proliferating cells. Furthermore A. butzleri infection caused a significant increase of distinct immune cell populations such as T and B cells, regulatory T cells, macrophages and monocytes in the colon which was accompanied by elevated colonic TNF, IFN-γ, nitric oxide (NO), IL-6, IL-12p70 and MCP-1 concentrations. Strikingly, A. butzleri induced extra-intestinal and systemic immune responses as indicated by higher NO concentrations in kidney and increased TNF, IFN-γ, IL-12p70 and IL-6 levels in serum samples of infected as compared to naive mice. Overall, inflammatory responses could be observed earlier in the course of infection by the CCUG 30485 as compared to the C1 strain. CONCLUSION/SIGNIFICANCE: Peroral A. butzleri infection induced not only intestinal but also extra-intestinal and systemic immune responses in gnotobiotic IL-10-/- mice in a strain-dependent manner. These findings point towards an immunopathogenic potential of A. butzleri in vertebrate hosts.


Subject(s)
Arcobacter/physiology , Colon/microbiology , Colon/pathology , Germ-Free Life , Inflammation/pathology , Interleukin-10/deficiency , Adaptive Immunity , Administration, Oral , Animals , Apoptosis , Arcobacter/growth & development , Bacterial Translocation , Cell Proliferation , Colony Count, Microbial , Cytokines/metabolism , Feces/microbiology , Gram-Negative Bacterial Infections/microbiology , Immunity, Innate , Inflammation/microbiology , Interleukin-10/metabolism , Mice, Inbred C57BL , Nitric Oxide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...