Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Resuscitation ; 77(2): 242-9, 2008 May.
Article in English | MEDLINE | ID: mdl-18096292

ABSTRACT

BACKGROUND: Therapeutic hypothermia (TH) represents an important method to attenuate post-resuscitation injury after cardiac arrest. Laboratory investigations have suggested that induction of hypothermia before return of spontaneous circulation (ROSC) may confer the greatest benefit. We hypothesized that a short delay in resuscitation to induce hypothermia before ROSC, even at the expense of more prolonged ischemia, may yield both physiological and survival advantages. METHODS: Cardiac arrest was induced in C57BL/6 mice using intravenous potassium chloride; resuscitation was attempted with CPR and fluid administration. Animals were randomized into three groups (n=15 each): a normothermic control group, in which 8 min of arrest at 37 degrees C was followed by resuscitation; an early intra-arrest hypothermia group, in which 6.5 min of 37 degrees C arrest were followed by 90s of cooling, with resuscitation attempted at 30 degrees C (8 min total ischemia); and a delayed intra-arrest hypothermia group, with 90s cooling begun after 8 min of 37 degrees C ischemia, so that animals underwent resuscitation at 9.5 min. RESULTS: Animals treated with TH demonstrated improved hemodynamic variables and survival compared to normothermic controls. This was the case even when comparing the delayed intra-arrest hypothermia group with prolonged ischemia time against normothermic controls with shorter ischemia time (7-day survival, 4/15 vs. 0/15, p<0.001). CONCLUSIONS: Short resuscitation delays to allow establishment of hypothermia before ROSC appear beneficial to both cardiac function and survival. This finding supports the concept that post-resuscitation injury processes begin immediately after ROSC, and that intra-arrest cooling may serve as a useful therapeutic approach to improve survival.


Subject(s)
Heart Arrest/therapy , Hypothermia, Induced/methods , Reperfusion Injury/prevention & control , Analysis of Variance , Animals , Body Temperature , Cardiopulmonary Resuscitation , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Monitoring, Physiologic/methods , Random Allocation , Survival Rate
2.
Circulation ; 111(4): 428-34, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15687130

ABSTRACT

BACKGROUND: Recent data highlight a vital link between well-performed cardiopulmonary resuscitation (CPR) and survival after cardiac arrest; however, the quality of CPR as actually performed by trained healthcare providers is largely unknown. We sought to measure in-hospital chest compression rates and to determine compliance with published international guidelines. METHODS AND RESULTS: We developed and validated a handheld recording device to measure chest compression rate as a surrogate for CPR quality. A prospective observational study of adult cardiac arrests was performed at 3 hospitals from April 2002 to October 2003. Resuscitations were witnessed by trained observers using a customized personal digital assistant programmed to store the exact time of each chest compression, allowing offline calculation of compression rates at serial time points. In 97 arrests, data from 813 minutes during which chest compressions were delivered were analyzed in 30-second time segments. In 36.9% of the total number of segments, compression rates were <80 compressions per minute (cpm), and 21.7% had rates <70 cpm. Higher chest compression rates were significantly correlated with initial return of spontaneous circulation (mean chest compression rates for initial survivors and nonsurvivors, 90+/-17 and 79+/-18 cpm, respectively; P=0.0033). CONCLUSIONS: In-hospital chest compression rates were below published resuscitation recommendations, and suboptimal compression rates in our study correlated with poor return of spontaneous circulation. CPR quality is likely a critical determinant of survival after cardiac arrest, suggesting the need for routine measurement, monitoring, and feedback systems during actual resuscitation.


Subject(s)
Cardiopulmonary Resuscitation/methods , Heart Arrest/therapy , Aged , Aged, 80 and over , Cardiopulmonary Resuscitation/standards , Computers, Handheld , Female , Heart Arrest/mortality , Humans , Inpatients , Male , Manometry/instrumentation , Middle Aged , Practice Guidelines as Topic , Prospective Studies , Survival Analysis , Time Factors , Treatment Outcome
3.
JAMA ; 293(3): 305-10, 2005 Jan 19.
Article in English | MEDLINE | ID: mdl-15657323

ABSTRACT

CONTEXT: The survival benefit of well-performed cardiopulmonary resuscitation (CPR) is well-documented, but little objective data exist regarding actual CPR quality during cardiac arrest. Recent studies have challenged the notion that CPR is uniformly performed according to established international guidelines. OBJECTIVES: To measure multiple parameters of in-hospital CPR quality and to determine compliance with published American Heart Association and international guidelines. DESIGN AND SETTING: A prospective observational study of 67 patients who experienced in-hospital cardiac arrest at the University of Chicago Hospitals, Chicago, Ill, between December 11, 2002, and April 5, 2004. Using a monitor/defibrillator with novel additional sensing capabilities, the parameters of CPR quality including chest compression rate, compression depth, ventilation rate, and the fraction of arrest time without chest compressions (no-flow fraction) were recorded. MAIN OUTCOME MEASURE: Adherence to American Heart Association and international CPR guidelines. RESULTS: Analysis of the first 5 minutes of each resuscitation by 30-second segments revealed that chest compression rates were less than 90/min in 28.1% of segments. Compression depth was too shallow (defined as <38 mm) for 37.4% of compressions. Ventilation rates were high, with 60.9% of segments containing a rate of more than 20/min. Additionally, the mean (SD) no-flow fraction was 0.24 (0.18). A 10-second pause each minute of arrest would yield a no-flow fraction of 0.17. A total of 27 patients (40.3%) achieved return of spontaneous circulation and 7 (10.4%) were discharged from the hospital. CONCLUSIONS: In this study of in-hospital cardiac arrest, the quality of multiple parameters of CPR was inconsistent and often did not meet published guideline recommendations, even when performed by well-trained hospital staff. The importance of high-quality CPR suggests the need for rescuer feedback and monitoring of CPR quality during resuscitation efforts.


Subject(s)
Cardiopulmonary Resuscitation/standards , Guideline Adherence/statistics & numerical data , Heart Arrest/therapy , Adult , Aged , Aged, 80 and over , Cardiopulmonary Resuscitation/methods , Chicago , Female , Hospitalization , Hospitals, University/standards , Humans , Male , Middle Aged , Practice Guidelines as Topic , Prospective Studies
4.
Crit Care Med ; 32(9 Suppl): S425-31, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15508672

ABSTRACT

OBJECTIVE: Surface cooling improves outcome in selected comatose survivors of cardiac arrest. Internal cooling with considerable volumes of intravenous cold saline may accelerate hypothermia induction. This study compares core temperatures in swine after central catheter infusions of saline ice slurry (saline with smoothed 100-microm-size ice particles) vs. an equal volume of chilled saline. We hypothesized that slurry would achieve core hypothermia (32-34 degrees C) more consistently and at a faster rate. DESIGN: A total of 11 swine were randomized to receive microparticulate ice slurry, chilled saline infusion, or anesthesia alone in a monitored laboratory setting. INTERVENTIONS: Intravenous bolus (50 mL/kg) of slurry or chilled 1.5% NaCl saline. Slurry was composed of a 1:1 mixture of ice and distilled H2O plus NaCl. MEASUREMENTS: Cerebral cortex, tympanic membrane, inferior vena cava, rectal temperatures, electrocardiogram, arterial blood pressure, and arterial oxygen saturation were recorded for 1 hr after bolus. MAIN RESULTS: Compared with anesthetized controls, core brain temperatures of the saline and slurry groups dropped by 3.4 +/- 0.4 degrees C and 5.3 +/- 0.7 degrees C (p = .009), respectively. With an infusion rate of 120 mL/min, cooling rates for the saline and slurry groups were -11.6 +/- 1.8 degrees C/hr and -18.2 +/- 2.9 degrees C/hr, respectively, during the first 20 mins. Four of four animals in the slurry group vs. zero of four animals in the saline group achieved target cortical temperatures of <34 degrees C. CONCLUSIONS: Cold intravenous fluids rapidly induce hypothermia in swine with intact circulation. A two-phase (liquid plus ice) saline slurry cools more rapidly than an equal volume of cold saline at 0 degrees C. Ice-slurry could be a significant improvement over other cooling methods when rate of cooling and limited infusion volumes are important to the clinician.


Subject(s)
Body Temperature , Catheterization, Central Venous/methods , Hypothermia, Induced/methods , Sodium Chloride/administration & dosage , Animals , Ice , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...