Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38915546

ABSTRACT

Purinergic P2X3 receptors form trimeric cation-gated channels, which are activated by extracellular ATP. P2X3 plays a crucial role in chronic cough and affects over 10% of the population. Despite considerable efforts to develop drugs targeting P2X3, the highly conserved structure within the P2X receptor family presents obstacles for achieving selectivity. Camlipixant, a potent and selective P2X3 antagonist, is currently in phase III clinical trials. However, the mechanisms underlying receptor desensitization, ion permeation, principles governing antagonism, and the structure of P2X3 when bound to camlipixant remain elusive. In this study, we established a stable cell line expressing homotrimeric P2X3 and utilized a peptide scaffold to purify the complex and determine its structure using cryo-electron microscopy (cryo-EM). P2X3 binds to camlipixant at a previously unidentified drug-binding site and functions as an allosteric inhibitor. Structure-activity studies combined with modeling and simulations have shed light on the mechanisms underlying the selective targeting and inhibition of P2X3 by camlipixant, distinguishing it from other members of the P2X receptor family.

2.
Polymers (Basel) ; 16(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38675010

ABSTRACT

Water recycling and reuse are cornerstones of water management, which can be compromised by the presence of pollutants. Among these, pharmaceuticals can overcome standard water treatments and require sophisticated approaches to remove them. Sorption is an economically viable alternative limited by the need for sorbents with a sorption coefficient (Kd) higher than 500 L/kg. The cross-linking of dextrin (Dx) with divinyl sulfone (DVS) in the presence of 1 mmol or 5 mmol of ibuprofen (IBU) yields the insoluble polymers pDx1 and pDx5 with improved affinity for IBU and high selectivity towards erythromycin (ERY) and ERY Kd higher than 4 × 103 L/kg, when tested against a cocktail of six drugs. Characterization of the polymers shows that both pDx1 and pDx5 have similar properties, fast sorption kinetics, and ERY Kd of 13.3 × 103 for pDx1 and 6.4 × 103 for pDx5, representing 26.6 and 12.0 times the 500 L/kg threshold. The fact that new affinities and improvements in Kd can be achieved by cross-linking Dx in the presence of other molecules that promote pre-organization expands the applications of DVS cross-linked polysaccharides as sustainable, scalable, and environmentally friendly sorbents with a potential application in wastewater treatment plants (WTPs).

3.
Polymers (Basel) ; 15(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37571082

ABSTRACT

Water use has been increasing globally by 1% per year, and recycling and re-use are critical issues compromised by the presence of pollutants. In this context, the design of novel materials and/or procedures for the large scale-removal of pollutants must be economically and environmentally feasible in order to be considered as part of the solution by emerging economies. We demonstrate that the cross-linking of biodegradable polysaccharides such as starch, dextrin, or dextrin and ß-cyclodextrin with divinyl sulfone is an innovative strategy for synthesizing insoluble and eco-friendly sorbent polymers, including pSt, pDx and pCD-Dx. The evaluation of these polymers' ability to remove ciprofloxacin (CIP), a prime example of antibiotic pollution, revealed that pSt, with a Kd of 1469 L/kg and a removal rate higher than 92%, is a favorable material. Its sorption is pH-dependent and enhanced at a mildly alkaline pH, allowing for the desorption (i.e., cleaning) and reuse of pSt through an environmentally friendly treatment with 20 mM AcONa pH 4.6. The facts that pSt (i) shows a high affinity for CIP even at high NaCl concentrations, (ii) can be obtained from affordable starting materials, and (iii) is synthesized and regenerated through organic, solvent-free procedures make pSt a novel sustainable material for inland water and seawater remediation, especially in less developed countries, due to its simplicity and low cost.

4.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 10): 328-333, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34605436

ABSTRACT

The 1.5 Šresolution crystal structure of DynU16, a protein identified in the dynemicin-biosynthetic gene cluster, is reported. The structure adopts a di-domain helix-grip fold with a uniquely positioned open cavity connecting the domains. The elongated dimensions of the cavity appear to be compatible with the geometry of a linear polyene, suggesting the involvement of DynU16 in the upstream steps of dynemicin biosynthesis.


Subject(s)
Anthraquinones/metabolism , Anti-Bacterial Agents/biosynthesis , Enediynes/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Multigene Family , Protein Conformation
5.
Nat Commun ; 9(1): 2719, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29988035

ABSTRACT

In the originally published version of this Article, financial support was not fully acknowledged. The PDF and HTML versions of the Article have now been corrected to also include support from the National Institutes of Health grant T32GM008280 to Sarah Alvarado.

6.
Nat Commun ; 9(1): 512, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29410444

ABSTRACT

Collagen lysyl hydroxylases (LH1-3) are Fe2+- and 2-oxoglutarate (2-OG)-dependent oxygenases that maintain extracellular matrix homeostasis. High LH2 levels cause stable collagen cross-link accumulations that promote fibrosis and cancer progression. However, developing LH antagonists will require structural insights. Here, we report a 2 Å crystal structure and X-ray scattering on dimer assemblies for the LH domain of L230 in Acanthamoeba polyphaga mimivirus. Loop residues in the double-stranded ß-helix core generate a tail-to-tail dimer. A stabilizing hydrophobic leucine locks into an aromatic tyrosine-pocket on the opposite subunit. An active site triad coordinates Fe2+. The two active sites flank a deep surface cleft that suggest dimerization creates a collagen-binding site. Loss of Fe2+-binding disrupts the dimer. Dimer disruption and charge reversal in the cleft increase Km and reduce LH activity. Ectopic L230 expression in tumors promotes collagen cross-linking and metastasis. These insights suggest inhibitor targets for fibrosis and cancer.


Subject(s)
Iron/chemistry , Mimiviridae/enzymology , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/chemistry , Protein Multimerization , Viral Proteins/chemistry , Amino Acid Sequence , Animals , Catalytic Domain , Cell Line, Tumor , Collagen/chemistry , Collagen/metabolism , Crystallography, X-Ray , Enzyme Stability , Humans , Iron/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Nude , Mimiviridae/genetics , Mutation , Neoplasm Metastasis , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/metabolism , Protein Binding , Scattering, Small Angle , Sequence Homology, Amino Acid , Transplantation, Heterologous , Viral Proteins/genetics , Viral Proteins/metabolism , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...