Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Environ Virol ; 14(4): 401-409, 2022 12.
Article in English | MEDLINE | ID: mdl-36181654

ABSTRACT

The pandemic of Coronavirus Disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is still impacting not only on human health but also all economic activities, especially in those related to tourism. In this study, in order to characterize the presence of SARS-CoV-2 in a hot spring park in Uruguay, swimming pools water, wastewater, and surface water from this area were analyzed by quantitative PCR. Wastewater from Salto city located next to the hydrothermal spring area was also evaluated as well as the presence of Rotavirus (RV). Overall, SARS-CoV-2 was detected in 13% (13/102) of the analyzed samples. Moreover, this virus was not detected in any of the samples from the swimming pools water and was present in 18% (3/17) of wastewater samples from the hotels area showing the same trend between the titer of SARS-CoV-2 and the number of infected people in Salto city. SARS-CoV-2 was also detected in wastewater samples (32% (11/34)) from Salto city, detecting the first positive sample when 105 persons were positive for SARS-CoV-2. Rotavirus was detected only in 10% (2/24) of the wastewater samples analyzed in months when partial lockdown measures were taken, however, this virus was detected in nearly all wastewater samples analyzed when social distancing measures and partial lockdown were relaxed. Wastewater results confirmed the advantages of using the detection and quantification of viruses in this matrix in order to evaluate the presence of these viruses in the population, highlighting the usefulness of this approach to define and apply social distancing. This study suggests that waters from swimming pools are not a source of infection for SARS-CoV-2, although more studies are needed including infectivity assays in order to confirm this statement.


Subject(s)
COVID-19 , Hot Springs , Rotavirus , Humans , SARS-CoV-2 , Rotavirus/genetics , Wastewater , Water , Communicable Disease Control
2.
Food Environ Virol ; 12(1): 58-67, 2020 03.
Article in English | MEDLINE | ID: mdl-31721078

ABSTRACT

We modeled Group A Rotavirus (RVA) and Norovirus genogroup II (GII NoV) transport experiments in standardized (crystal quartz sand and deionized water with adjusted pH and ionic strength) and natural soil matrix-water systems (MWS). On the one hand, in the standardized MWS, Rotavirus and Norovirus showed very similar breakthrough curves (BTCs), showing a removal rate of 2 and 1.7 log10, respectively. From the numerical modeling of the experiment, transport parameters of the same order of magnitude were obtained for both viruses. On the other hand, in the natural MWS, the two viruses show very different BTCs. The Norovirus transport model showed significant changes; BTC showed a removal rate of 4 log10, while Rotavirus showed a removal rate of 2.6 log10 similar to the 2 log10 observed on the standardized MWS. One possible explanation for this differential behavior is the difference in the isoelectric point value of these two viruses and the increase of the ionic strength on the natural MWS.


Subject(s)
Fresh Water/virology , Norovirus/chemistry , Rotavirus/chemistry , Fresh Water/chemistry , Humans , Hydrogen-Ion Concentration , Kinetics , Models, Biological , Norovirus/growth & development , Osmolar Concentration , Rotavirus/growth & development , Soil/chemistry , Soil Microbiology
3.
Food Environ Virol ; 10(3): 305-315, 2018 09.
Article in English | MEDLINE | ID: mdl-29564721

ABSTRACT

In Uruguay, groundwater is frequently used for agricultural activities, as well as for human consumption in urban and rural areas. As in many countries worldwide, drinking water microbiological quality is evaluated only according to bacteriological standards and virological analyses are not mentioned in the legislation. In this work, the incidence of human viral (Rotavirus A, Norovirus GII, and human Adenovirus) and bacterial (total and thermotolerant coliform and Pseudomonas aeruginosa) contamination in groundwater in the Salto district, Uruguay, as well as the possible correlation between these groups of microorganisms, was studied. From a total of 134 groundwater samples, 42 (32.1%) were positive for Rotavirus, only 1 (0.7%) for both Rotavirus and Adenovirus, and 96 (72.6%) samples were positive for bacterial indicators. Results also show that Rotavirus presence was not associated with changes in chemical composition of the aquifer water. Bacteriological indicators were not adequate to predict the presence of viruses in individual groundwater samples (well scale), but a deeper spatial-temporal analysis showed that they are promising candidates to assess the viral contamination degree at aquifer scale, since from the number of wells with bacterial contamination the number of wells with viral contamination could be estimated.


Subject(s)
Bacteria/growth & development , Groundwater/virology , Viruses/growth & development , Water Microbiology , Water Quality , Water Wells , Adenoviruses, Human/growth & development , Agriculture , Drinking Water/virology , Groundwater/microbiology , Humans , Norovirus/growth & development , Rotavirus/growth & development , Uruguay
4.
Eur J Med Chem ; 43(10): 2238-46, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18276039

ABSTRACT

Electronic, lipophilic and steric descriptors included in QSAR-2D and -3D are analyzed for a set of ortho- and para-naphthoquinones that have proved to be powerful oxidative agents with potent trypanocidal activities specially against Leptomonas seymouri and Trypanosoma cruzi. Electronic properties are calculated by means of semiempirical (PM3), ab initio (HF/3-21G) and density functional theory (B3LYP/6-31+G*) methodologies. Three different electronic states, neutral quinones, hydroquinones and semiquinones, are studied to investigate if any one of them are statistically related with the biological activities. The best correlations were obtained at the B3LYP level of theory because it includes electronic correlation. The QSAR-2D indicates that the best trypanocidal growth inhibitors are molecules in the semiquinone electronic state, with the following properties: (a) high negative value of EHOMO, (b) high negative charge in the oxygen atoms of the carbonyl groups, (c) high positive charge in the carbon atom of one of carbonyl moieties and (d) high electronegativity (chi). In a complementary way, the QSAR-3D indicates that the electrostatic field correlates with trypanocidal activity and the presence of bulk moieties would increase activity. The idea of comparing the three electronic states may prove to be of most importance in the general strategy to the design of new trypanocidal drugs. In fact, the experimental results showed that semiquinone is the one really statistically relevant indicating a clear connection between biochemical and theoretical aspects. Finally, we demonstrated that to be a good anti-trypanosomatid compound, the molecule must be a good electron acceptor to reach easily the essential semiquinone state. We expect that the present results motivate new experimental as well as theoretical investigations that confirm our findings.


Subject(s)
Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Quantitative Structure-Activity Relationship , Quantum Theory , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Animals , Trypanosoma cruzi/drug effects , Trypanosomatina/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...