Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 15(4)2024 03 28.
Article in English | MEDLINE | ID: mdl-38674359

ABSTRACT

Rare sarcomas present significant treatment challenges compared to more prevalent soft tissue sarcomas due to limited treatment options and a poor understanding of their biology. This study investigates a unique case of penile sarcoma, providing a comprehensive morphological and molecular analysis. Through the creation of experimental patient-derived models-including patient-derived xenograft (PDX), 3D, and monolayer primary cultures-we successfully replicated crucial molecular traits observed in the patient's tumor, such as smooth muscle actin and CD99 expression, along with specific mutations in genes like TSC2 and FGFR4. These models are helpful in assessing the potential for an in-depth exploration of this tumor's biology. This comprehensive approach holds promise in identifying potential therapeutic avenues for managing this exceedingly rare soft tissue sarcoma.


Subject(s)
Sarcoma , Animals , Humans , Male , Mice , Mutation , Penile Neoplasms/genetics , Penile Neoplasms/pathology , Sarcoma/genetics , Sarcoma/pathology , Tuberous Sclerosis Complex 2 Protein/genetics , Middle Aged
2.
J Med Microbiol ; 61(Pt 4): 463-469, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22116983

ABSTRACT

Staphylococcus lugdunensis is an unusually virulent coagulase-negative species, which causes serious infection similar to S. aureus. We evaluated the expression of virulence factors such as S. lugdunensis synergistic haemolysin (SLUSH), fibrinogen-binding protein (Fbl), biofilm production and biofilm-production-related genes in 23 S. lugdunensis clinical isolates and one type strain that had been previously characterized for their genotypes. In addition, the biofilm composition and the ability of isolates to adhere to and invade human epithelial lung cells were also investigated. The PCR method used detected the presence of slush and intercellular adhesin (ica) virulence genes in all isolates. All isolates produced the Fbl protein and, with the exception of the type strain, all isolates produced the SLUSH haemolysin. Fourteen (60.9 %) isolates produced biofilms. The detachment assay, using sodium metaperiodate or proteolytic enzymes to analyse the biofilm composition, showed protein-mediated biofilms in two representative isolates, one for each colony type (rough and smooth). All strongly biofilm-producing isolates, including three with rough colony morphology, had the same prevalent PFGE pattern. However, among the representative strains tested, only the S. lugdunensis isolate that formed rough colonies was able to adhere to and invade A549 cell monolayers in the same quantities as those observed with S. aureus isolates (P = 1.000). No significant adhesion or invasion was observed for the other isolates in comparison with the S. aureus isolate, independent of biofilm production or clonality. Our results could explain the incredible ability of this pathogen to cause infections that are as aggressive as S. aureus. In addition, the ability of S. lugdunensis to adhere to and invade eukaryotic cells was also noticed for isolates with rough colony morphology, reinforcing the increased virulence in this species.


Subject(s)
Bacterial Adhesion/physiology , Epithelial Cells/microbiology , Respiratory Mucosa/cytology , Staphylococcus lugdunensis/cytology , Staphylococcus lugdunensis/genetics , Bacterial Adhesion/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Brazil/epidemiology , Cell Line, Tumor , Gene Expression Regulation, Bacterial/physiology , Humans , Lung/cytology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Staphylococcus lugdunensis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...