Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Sex Med ; 6(8): 2162-72, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19493280

ABSTRACT

INTRODUCTION: Sleep disturbances are a frequent complaint in women and are often attributed to hormonal fluctuations during the menstrual cycle. Rodents have been used as models to examine the effects of sleep deprivation on hormonal and behavioral changes. Among the many comorbidities common to sleep disorders, sexual behavior remains the least well studied. AIM: To determine whether paradoxical sleep deprivation (PSD) can affect sexual receptivity (male acceptance) and proceptivity (male solicitation) behaviors in female rats. METHODS: Female Wistar rats were subjected to PSD or were maintained as controls. After this period, the estrous cycle (proestrus, estrus, and diestrus) was determined, and all females were placed with a sexually experienced male. In order to investigate the role of hormones in sexual behavior, we included additional groups that were artificially induced to be sexually receptive via administration of a combination of estradiol and progesterone. MAIN OUTCOME MEASUREMENTS: Receptivity and proceptivity behaviors, as well as progesterone and corticosterone concentrations were monitored. RESULTS: Selective sleep loss caused a significant increase in proceptivity and receptivity behaviors in females exclusively during the proestrus phase. The rejection response was increased in PSD rats during the estrus and diestrus phases, as compared with PSD-receptive and proestrus females. PSD reduced progesterone levels during the proestrus phase relative to the respective control group during the same phase of the estrous cycle. The PSD-proestrus females that displayed the most robust sexual response exhibited greater concentrations of corticosterone than PSD-diestrus females, with an absence of sexual solicitation behaviors. CONCLUSIONS: PSD produced a distinct response in the hormonal profile that was consistent with the phase of the estrous cycle. These results show that sleep loss can affect sexual motivation and might lead to important clinical implications, including alterations in female physiology and reproductive abnormalities.


Subject(s)
Estrus , Sexual Behavior, Animal , Sleep Deprivation/complications , Animals , Female , Hydrocortisone , Progesterone , Rats , Rats, Wistar , Statistics, Nonparametric
2.
Reprod Biol Endocrinol ; 5: 7, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17331246

ABSTRACT

BACKGROUND: Paradoxical sleep deprivation (PSD) associated with cocaine has been shown to enhance genital reflexes (penile erection-PE and ejaculation-EJ) in Wistar rats. Since hypertension predisposes males to erectile dysfunction, the aim of the present study was to investigate the effects of PSD on genital reflexes in the spontaneously hypertensive rat (SHR) compared to the Wistar strain. We also extended our study to examine how PSD affect steroid hormone concentrations involved in genital events in both experimental models. METHODS: The first experiment investigated the effects of PSD on genital reflexes of Wistar and SHR rats challenged by saline and cocaine (n = 10/group). To further examine the impact of the PSD on concentrations of sexual hormones, we performed a hormonal analysis of testosterone and progesterone in the Wistar and in SHR strains. Since after PSD progesterone concentrations decreased in the SHR compared to the Wistar PSD group we extended our study by investigating whether progesterone (25 mg/kg or 50 mg/kg) or testosterone (0.5 mg/kg or 1.0 mg/kg) administration during PSD would have a facilitator effect on the occurrence of genital reflexes in this hypertensive strain. RESULTS: A 4-day period of PSD induced PE in 50% of the Wistar rats against 10% for the SHR. These genital reflexes was potentiated by cocaine in Wistar rats whereas this scenario did not promote significant enhancement in PE and EJ in hypertensive rats, and the percentage of SHR displaying genital reflexes still figured significantly lower than that of the Wistar strain. As for hormone concentrations, both sleep-deprived Wistar and SHR showed lower testosterone concentrations than their respective controls. Sleep deprivation promoted an increase in concentrations of progesterone in Wistar rats, whereas no significant alterations were found after PSD in the SHR strain, which did not present enhancement in erectile responses. In order to explore the role of progesterone in the occurrence of genital reflexes, SHR were treated daily during the sleep deprivation period with progesterone; after the administration of this hormone and challenge with cocaine, we observed a significant increase in erectile events compared with the vehicle PSD SHR+cocaine group. CONCLUSION: Our data showed that the low frequency of genital reflexes found in SHR sleep deprived rats may be attributed to the lower concentrations of progesterone in these rats, based on the observation that progesterone replacement increased genital reflexes in this strain.


Subject(s)
Erectile Dysfunction/drug therapy , Hypertension/complications , Progesterone/pharmacology , Progestins/pharmacology , Sleep Deprivation , Androgens/blood , Androgens/pharmacology , Animals , Cocaine , Erectile Dysfunction/chemically induced , Male , Progesterone/blood , Progestins/blood , Rats , Rats, Inbred SHR , Rats, Wistar , Sexual Behavior, Animal/drug effects , Testosterone/blood , Testosterone/pharmacology , Vasoconstrictor Agents
3.
Brain Res ; 1115(1): 148-54, 2006 Oct 18.
Article in English | MEDLINE | ID: mdl-16938279

ABSTRACT

The purpose was to ascertain whether the different schedules of long-term food restriction (FR) exert influence on genital reflexes (penile erection-PE and ejaculation-EJ) induced by paradoxical sleep deprivation (PSD) in male rats. Diet restriction began at weaning with 6 g/day and food was increased by 1 g per week until reaching 15 g/day by adulthood. Rats submitted to FR and those fed ad libitum were distributed into PSD or maintained as control groups and challenged with saline or cocaine. The results indicated that PSD+saline induced PE and EJ in both ad libitum and FR groups, but cocaine only potentiated reflexes in ad libitum group. In an attempt to revert the effects of FR on genital reflexes, we provided food ad libitum to the restricted group during the PSD period (4 days). When compared to FR rats, an increase in the frequency of PE was observed in the FR group fed ad libitum during PSD (both groups were challenged with cocaine). Further, we sought to investigate motivational behavior by placing food within the behavioral cage during the evaluation of genital reflexes. The FR PSD+saline group challenged with food did not display genital reflexes but when injected with cocaine the responses were similar to those observed in FR PSD+cocaine rats not challenged with food. Our data suggest that the facilitatory effect of PSD on genital reflexes did not override the inhibitory effect of FR on erectile function, but different schedules of FR produce distinct effects on genital reflexes. Further studies are warranted to dissect the effect of food restriction on sexual behavior.


Subject(s)
Cocaine-Related Disorders/complications , Food Deprivation/physiology , Genitalia, Male/physiopathology , Sexual Behavior, Animal/physiology , Sexual Dysfunction, Physiological/etiology , Sleep Deprivation/complications , Animals , Central Nervous System Stimulants/adverse effects , Cocaine/adverse effects , Cocaine-Related Disorders/physiopathology , Disease Models, Animal , Eating/physiology , Ejaculation/drug effects , Ejaculation/physiology , Genitalia, Male/drug effects , Genitalia, Male/innervation , Male , Penile Erection/drug effects , Penile Erection/physiology , Rats , Rats, Wistar , Reflex/drug effects , Reflex/physiology , Sexual Behavior, Animal/drug effects , Sexual Dysfunction, Physiological/physiopathology , Sleep Deprivation/physiopathology
4.
Brain Res ; 1057(1-2): 49-56, 2005 Sep 28.
Article in English | MEDLINE | ID: mdl-16122716

ABSTRACT

The present purpose was to determine the effects of different schedules of long-term food restriction (FR) applied to rats from weaning to the 8th week. Rats were distributed into FR and ad libitum groups at weaning and fed at 7 am, at 7 pm, and finally, restricted rats fed ad libitum. The restricted rats started with 6 g/day and the food was increased by 1 g per week until reaching 15 g/day by adulthood. The rats were implanted with electrodes to record electrocorticogram/eletromyogram signals. Their wake-sleep cycles were monitored over 3 consecutive days (72 h of recording). The FR group fed at 7 am showed an increase in awake time, and decrease in slow wave sleep (SWS) and paradoxical sleep (PS) during the three light periods compared with the control recordings whereas in the dark periods, these sleep parameters were the opposite. The restricted group fed in the evening showed no statistical significances at diurnal periods; however, a significant decrease was observed in the dark recordings for awake time, but the SWS and PS were increased in relation to controls. The analysis of the 24-h period demonstrated that both FR groups presented increase in SWS time. After being FR, the rats were fed ad libitum and their sleep was monitored for 3 additional days. During the first dark recording, the decrease in awake time and increase in SWS were still present; however, as ad libitum food continued, these sleep parameters returned to control values, reestablishing the normal sleep pattern. These results suggest that dietary restriction, regardless to the feeding schedule, caused increase in total sleep time, during the active period.


Subject(s)
Activity Cycles/physiology , Cerebral Cortex/physiopathology , Food Deprivation/physiology , Sleep Stages/physiology , Analysis of Variance , Animals , Behavior, Animal , Body Weight/physiology , Electroencephalography/methods , Humans , Rats , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...