Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Res ; 226: 41-47, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31284943

ABSTRACT

Myzus persicae Sulzer (Hemiptera: Aphididae), is a generalist cosmopolitan insect that infests more than 400 plant species of 40 different families and is one of the major pests infesting potato crops. It causes direct damage and also spread plant viruses. The intensive use of synthetic insecticide to control aphids has led to resistant populations. Therefore, there is a need to develop biopesticides for effective control that minimizes environmental hazards. The bacteria Bacillus amyloliquefaciens is recognized as a producer of a variety of bioactive compounds. The aim here was to evaluate the aphicidal effect of B. amyloliquefaciens strains, CBMDDrag3, PGPBacCA2, and CBMDLO3, and their metabolites on the mortality and fecundity of M. persicae. Cells suspensions, heat-killed cell suspensions, cell-free supernatants, or isolated lipopeptide fractions from B. amyloliquefaciens strains were offered to aphids through artificial diets. The isolated lipopeptide fractions composed mainly of kurstakins, surfactins, iturins, and fengycins, when were administrated through diets, had no aphicidal effect against M. persicae. However, aphids fed on diets with whole cell suspensions and its cell-free supernatant of all three bacteria strains resulted in 100% mortality of adult aphids and nymphs. Specially, B. amyloliquefaciens CBMDLO3, has an effective aphicidal effect on M. persicae, used both bacterial cells and their metabolites. Moreover, heat-killed cells of B. amyloliquefaciens CBMDLO3 also had aphicidal action, although the aphid mortality was lower than on diet with living bacteria. Therefore, these results propose that B. amyloliquefaciens, could function as a novel eco-friendly biopesticide for the control of M. persicae.


Subject(s)
Aphids/drug effects , Aphids/microbiology , Bacillus amyloliquefaciens/metabolism , Pest Control, Biological , Animals , Bacillus amyloliquefaciens/isolation & purification , Biological Control Agents/isolation & purification , Biological Control Agents/metabolism , Biological Control Agents/pharmacology , Female , Insect Control/methods , Insecticides/isolation & purification , Insecticides/metabolism , Insecticides/pharmacology , Lipopeptides/isolation & purification , Lipopeptides/metabolism , Lipopeptides/pharmacology , Plant Diseases/parasitology , Plant Diseases/prevention & control
2.
Insect Sci ; 25(1): 127-136, 2018 Feb.
Article in English | MEDLINE | ID: mdl-27334419

ABSTRACT

The green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae) is one of the potato important pests; it is the most efficient vector of potato viruses. Myzus persicae harbors the endosymbiotic bacteria Buchnera aphidicola which supplements their diet. There is increasing evidence that B. aphidicola is involved in plant-aphid interactions and we previously demonstrated that B. aphidicola disruption (aposymbiosis) affected the probing behavior of M. persicae on radish plants, delaying host plant acceptance. In this work, we evaluated the effect of aposymbiosis on the probing behavior of M. persicae on 2 Solanum species with different compatibility with M. persicae, Solanum tuberosum (susceptible) and Solanum stoloniferum (resistant) with the electrical penetration graph technique (EPG). To disrupt B. aphidicola, rifampicin was administered to aphids through artificial diets. Aposymbiotic aphids, on both plant species, showed increased pathway activities, mechanical problems with the stylets, and delayed salivation in the phloem. The extended time in derailed stylet mechanics affected the occurrence of most other probing activities; it delayed the time to the first phloem phase and prevented ingestion from the phloem. The effect of aposymbiosis was more evident in the compatible interaction of M. persicae-S. tuberosum, than in the incompatible interaction with S. stoloniferum, which generated the M. persicae-S. tuberosum interaction to become incompatible. These results confirm that B. aphidicola is involved in the plant-aphid interaction in relation to plant acceptance, presumably through a role in stylets penetration in the plant.


Subject(s)
Aphids/microbiology , Buchnera/physiology , Herbivory , Solanum tuberosum , Animals , Species Specificity , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...