Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36433191

ABSTRACT

The use of non-contact scanning equipment in metrology and in dimensional and geometric inspection applications is increasing due to its ease of use, the speed and density of scans, and the current costs. In fact, these technologies are becoming increasingly dominant in the industrial environment, thus moving from reverse engineering applications to metrological applications. However, this planned transfer requires actions to ensure the achievable accuracy by providing traceability of measurements. In the present study, a comparison between the devices is carried out and a specific standard artefact is designed, equipped with multiple ceramic optically friendly entities, and allowing a wide variety of geometric dimensioning and tolerancing (GD&T). Four different 3D scanning sensors are used in the experimentation. Three of them are based on laser triangulation, and the fourth is a structured blue light sensor (fringe pattern projection). The standard artefact is calibrated with a high accuracy, using a coordinate measuring machine (CMM) and probing sensors. With this CMM, reference values of multiple predefined GD&T are obtained. The evaluation methodology maximises the accuracy of each device in measuring the dimensions of the artefact due to the good dimensional (milling and turning), surface (control of machining variables), and the dimensional and spatial distribution characteristics. The procedure also includes the same treatment of the captured point clouds (trimming, filtering, and best-fit algorithm, etc.) in each of the four 3D scanning sensors considered. From this process, very reliable measurements of the maximum achievable accuracy of each device (deviations from the CMM measurements) are finally obtained, and a multi-characteristic comparison between the four sensors is performed, also with high reliability.

2.
Materials (Basel) ; 15(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35683040

ABSTRACT

The improvement of industrial manufacturing processes requires measurement procedures and part inspection tasks to be faster and faster while remaining effective. In this sense, the capabilities of noncontact measuring systems are of great help, not only because of the great amount of data they provide but also for the ease of the integration of these systems as well as their automation, minimising the impact on the industry. This work presents a comparative study on the influence of two surface treatments performed on low-cost, high-precision metallic spheres on the suitability of these spheres to be used as artefacts for the calibration of optical sensors, specifically laser triangulation sensors. The first surface treatment is sandblasting (a mechanical process), whose effect has been studied and presented in previous work. The second treatment focused on in this paper is acid etching (a chemical process). The comparison has been performed by evaluating the same metrological characteristics on two identical groups of spheres of similar type (diameter and accuracy), each of which was subjected to a different treatment. It was necessary to obtain the reference values of the metrological parameters with high accuracy, which involved measuring the spheres with a coordinate measuring machine (CMM) by contact probing. Likewise, spheres were scanned by a laser triangulation sensor mounted on the same CMM. The results derived from both the contact and laser measurements and before and after treating the surfaces were used to compare four parameters: point density, sphere diameter, sphere form deviation, and standard deviation of the best-fit sphere to the corresponding point cloud. This research has revealed that acid etching produces better optical qualities on the surfaces than the mirror-like original ones, thus enhancing the laser sensor capturing ability. However, such chemical etching has affected the metrological characteristics of the spheres to a greater extent than that produced by sandblasting. This difference is due to the variability of the chemical etching, caused by the high aggressiveness of the acid, which makes the process very sensitive to the time of exposure to the acid and the orientations of the spheres in the bath.

3.
Materials (Basel) ; 14(18)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34576407

ABSTRACT

To ensure that measurements can be made with non-contact metrology technologies, it is necessary to use verification and calibration procedures using precision artefacts as reference elements. In this environment, the need for increasingly accurate but also more cost-effective calibration artefacts is a clear demand in industry. The aim of this work is to demonstrate the feasibility of using low-cost precision spheres as reference artefacts in calibration and verification procedures of non-contact metrological equipment. Specifically, low-cost precision stainless steel spheres are used as reference artefacts. Obviously, for such spheres to be used as standard artefacts, it is necessary to change their optical behavior by removing their high brightness. For this purpose, the spheres are subjected to a manual sandblasting process, which is also a very low-cost process. The equipment used to validate the experiment is a laser triangulation sensor mounted on a Coordinate Measuring Machine (CMM). The CMM touch probe, which is much more accurate, will be used as a device for measuring the influence of sandblasting on the spheres. Subsequently, the influence of this post-processing is also checked with the laser triangulation sensor. Ultimately, the improvement in the quality of the point clouds captured by the laser sensor will be tested after removing the brightness, which distorts and reduces the quantity of points as well as the quality of the point clouds. In addition to the number of points obtained, the parameters used to study the effect of sandblasting on each sphere, both in contact probing and laser scanning, are the measured diameter, the form error, as well as the standard deviation of the point cloud regarding the best-fit sphere.

4.
Polymers (Basel) ; 13(7)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918240

ABSTRACT

The dimensional and geometrical quality of additively manufactured parts must be increased to match industrial requirements before they can be incorporated to mass production. Such an objective has a great relevance in the case of features of linear size that are affected by dimensional or geometrical tolerances. This work proposes a design for additive manufacturing strategy that uses the re-parameterization of part design to minimize shape deviations from cylindrical geometries. An analysis of shape deviations in the frequency domain is used to define a re-parameterization strategy, imposing a bi-univocal correspondence between verification parameters and design parameters. Then, the significance of variations in the process and design factors upon part quality is analyzed using design of experiments to determine the appropriate extension for modelling form deviation. Finally, local deviations are mapped for design parameters, and a new part design including local compensations is obtained. This strategy has been evaluated upon glossy surfaces manufactured in a Vero™ material by polymer jetting. The results of the proposed example showed a relevant improvement in dimensional quality, as well as a reduction of geometrical deviations, outperforming the results obtained with a conventional scaling compensation.

5.
Sensors (Basel) ; 20(1)2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31861251

ABSTRACT

Industrial adoption of additive manufacturing (AM) processes demands improvement in the geometrical accuracy of manufactured parts. One key achievement would be to ensure that manufactured layer contours match the correspondent theoretical profiles, which would require integration of on-machine measurement devices capable of digitizing individual layers. Flatbed scanners should be considered as serious candidates, since they can achieve high scanning speeds at low prices. Nevertheless, image deformation phenomena reduce their suitability as two-dimensional verification devices. In this work, the possibilities of using flatbed scanners for AM contour verification are investigated. Image distortion errors are characterized and discussed and special attention is paid to the plication effect caused by contact imaging sensor (CIS) scanners. To compensate this phenomena, a new local distortion adjustment (LDA) method is proposed and its distortion correction capabilities are evaluated upon actual layer contours manufactured on a fused filament fabrication (FFF) machine. This proposed method is also compared to conventional global distortion adjustment (GDA). Results reveal quasi-systematic deformations of the images which could be minimized by means of distortion correction. Nevertheless, the irregular nature of such a distortion and the superposition of different errors penalize the use of GDA, to the point that it should not be used with CIS scanners. Conclusions indicate that LDA-based correction would enable the use of flatbed scanners in AM for on-machine verification tasks.

6.
Materials (Basel) ; 12(23)2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31795091

ABSTRACT

In order to compete with traditional manufacturing processes, Additive Manufacturing (AM) should be capable of producing medium to large batches at industrial-degree quality and competitive cost-per-unit. This paper proposes a systematic framework approach to the problem of fulfilling dimensional and geometric requirements for medium batch sizes of AM parts, which has been structured as a three-step optimization methodology. Firstly, specific work characteristics are analyzed so that information is arranged according to an Operation Space (factors that could have an influence upon quality) and a Verification Space (formed by quality indicators and requirements). Standard process configuration leads to characterization of the standard achievable quality. Secondly, controllable factors are analyzed to determine their relative influence upon quality indicators and the optimal process configuration. Thirdly, optimization of part dimensional and/or geometric definition at the design level is performed in order to improve part quality and meet quality requirements. To evaluate the usefulness of the proposed framework under quasi-industrial condition, a case study is presented here which is focused on the dimensional and geometric optimization of surgical-steel tibia resection guides manufactured by Laser-Power Bed Fusion (L-PBF). The results show that the proposed approach allows for part quality improvement to a degree that matches the initial requirements.

7.
Crit Care ; 12(6): R158, 2008.
Article in English | MEDLINE | ID: mdl-19091069

ABSTRACT

INTRODUCTION: Sepsis is a leading cause of admission to non-cardiological intensive care units (ICUs) and the second leading cause of death among ICU patients. We present the first extensive dataset on the epidemiology of severe sepsis treated in ICUs in Spain. METHODS: We conducted a prospective, observational, multicentre cohort study, carried out over two 3-month periods in 2002. Our aims were to determine the incidence of severe sepsis among adults in ICUs in a specific area in Spain, to determine the early (48 h) ICU and hospital mortality rates, as well as factors associated with the risk of death. RESULTS: A total of 4,317 patients were admitted and 2,619 patients were eligible for the study; 311 (11.9%) of these presented at least 1 episode of severe sepsis, and 324 (12.4%) episodes of severe sepsis were recorded. The estimated accumulated incidence for the population was 25 cases of severe sepsis attended in ICUs per 100,000 inhabitants per year. The mean logistic organ dysfunction system (LODS) upon admission was 6.3; the mean sepsis-related organ failure assessment (SOFA) score on the first day was 9.6. Two or more organ failures were present at diagnosis in 78.1% of the patients. A microbiological diagnosis of the infection was reached in 209 episodes of sepsis (64.5%) and the most common clinical diagnosis was pneumonia (42.8%). A total of 169 patients (54.3%) died in hospital, 150 (48.2%) of these in the ICU. The mortality in the first 48 h was 14.8%. Factors associated with early death were haematological failure and liver failure at diagnosis, acquisition of the infection prior to ICU admission, and total LODS score on admission. Factors associated with death in the hospital were age, chronic alcohol abuse, increased McCabe score, higher LODS on admission, DeltaSOFA 3-1 (defined as the difference in the total SOFA scores on day 3 and on day 1), and the difference of the area under the curve of the SOFA score throughout the first 15 days. CONCLUSIONS: We found a high incidence of severe sepsis attended in the ICU and high ICU and hospital mortality rates. The high prevalence of multiple organ failure at diagnosis and the high mortality in the first 48 h suggests delays in diagnosis, in initial resuscitation, and/or in initiating appropriate antibiotic treatment.


Subject(s)
Hospital Mortality/trends , Multiple Organ Failure/mortality , Sepsis/mortality , Aged , Aged, 80 and over , Cohort Studies , Female , Hospitals, Community , Humans , Intensive Care Units , Male , Middle Aged , Observation , Prospective Studies , Risk Factors , Sepsis/physiopathology , Severity of Illness Index , Spain/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...