Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Sci Rep ; 10(1): 16924, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060670

ABSTRACT

The conformation of the German shepherd dog (GSD) varies considerably within the breed. These differences may result in large variation in the movement and limb loading and undesirable consequences to their musculoskeletal health. This study aimed to investigate the relationship between conformation and biomechanical measures in 60 GSDs. Full body kinematic and kinetic measures were computed from 3D motion capture and pressure data. The dogs were divided into groups based on their back slope and curvature. Correlation analysis and statistical differences between groups showed that GSDs with a greater back slope have a greater contact area in their forelimbs and place them closer together when standing (n = 60). During trot, the dogs with sloped back showed a greater vertical force in the forelimbs and a greater mid-thoracic flexion (n = 60). Unilateral differences were found in the stifle flexion, hock flexion and hock adduction, suggesting greater movement asymmetry with an increase in the back slope (n = 30). In conclusion, several biomechanical parameters are affected by the GSD's slope of the back and not by its curvature. Further studies are required to determine whether the variation in movement, posture and conformation within the breed relates to an increased susceptibility to musculoskeletal disorders.


Subject(s)
Movement/physiology , Posture/physiology , Somatotypes/physiology , Animals , Biomechanical Phenomena/physiology , Dogs , Extremities , Female , Forelimb , Gait , Kinetics , Male , Physical Appearance, Body/physiology , Physiological Phenomena/physiology , Standing Position
5.
Vet J ; 229: 13-18, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29183568

ABSTRACT

Compensatory limb loading has been studied in lame dogs; however, little is known about how these compensations relate to motion of the head and pelvis, assessment of which is an important component of lameness examinations. The aim of this study was to describe the patterns of vertical head and pelvic motion symmetry at the trot in dogs with induced supporting limb lameness in the forelimbs or hind limbs. Ten sound dogs were trotted on a treadmill before and after temporary induction of moderate lameness (grade 2/5) in each limb. Reflective markers were located on the head, pelvis and right forelimb, and kinematic data were captured with a motion capture system. Upper body symmetry parameters were calculated, including differences in the highest (HDmax) and in the lowest (HDmin) positions of the head, and in the highest (PDmax) and in the lowest (PDmin) positions of the mid-pelvis, with a value of zero indicating symmetry. The head was lowered more during the sound limb stance phase and lowered less during the lame limb stance phase in supporting forelimb lameness (HDmin: 4.6mm in dogs when sound, -18.3mm when left limb lameness was induced and 20.5mm when right limb lameness was induced). The mid-pelvis was lowered more during the sound limb stance phase and lowered and lifted less during the lame limb stance phase in supporting hind limb lameness (PDmin: 1mm in dogs when sound, -10.1mm in left limb lameness and 8.4mm in right limb lameness). The hip of the lame side, measured at the level of the greater trochanter, had an increased downwards displacement during the lame limb swing phase (-21mm in left hind limb lameness, P=0.005; 23.4mm in right hind limb lameness, P=0.007). Asymmetry in the lowering of the head or mid-pelvis is a more sensitive indicator of supporting forelimb and hind limb lameness, respectively, than asymmetry in the raising of the head. Increased displacement of the hip ('hip drop' of the lame side during its swing phase) is a good indicator of hind limb lameness in dogs.


Subject(s)
Dog Diseases/physiopathology , Gait , Head/physiology , Hindlimb/physiopathology , Pelvis/physiology , Animals , Biomechanical Phenomena , Dogs , Exercise Test , Female , Forelimb/physiopathology , Lameness, Animal/physiopathology , Male
6.
Vet J ; 222: 54-59, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28283369

ABSTRACT

Lameness detection can be challenging in dogs, as reflected in the reported low inter-rater agreement when visually assessing lameness. The aim of this study was to use an inertial sensor-based system to detect and quantify induced distal and proximal limb disturbances mimicking supporting and swinging limb lameness in dogs trotting on a treadmill by measuring vertical head and pelvic movement symmetry. Ten clinically sound dogs were equipped with inertial measurement units that were attached to the head, pelvis and right distal forelimb. Vertical head and pelvic movement symmetry were measured while dogs trotted on a treadmill, before and after the induction of moderate support or swinging fore- and hindlimb lameness. Four symmetry variables were calculated: the differences in displacement between the two lowest and between the two highest values of the head and pelvis per stride, respectively. These variables were defined as minimum head difference (HDmin), maximum head difference (HDmax), minimum pelvic difference (PDmin) and maximum pelvic difference (PDmax). Induction of supporting forelimb and hindlimb lameness produced significant changes in HDmin and PDmin, respectively. Swinging forelimb and hindlimb lameness produced significant changes in HDmax and PDmax, respectively. Additional compensatory ipsilateral forelimb and contralateral hindlimb movements were detected. Based on our findings, inertial sensor-based systems can be used to detect and quantify induced moderate lameness and differentiate between supporting and swinging limb lameness in dogs trotting on a treadmill. Further studies are needed to evaluate this method in dogs presented for clinical lameness evaluation and in overground locomotion.


Subject(s)
Accelerometry/veterinary , Dog Diseases/diagnosis , Lameness, Animal/diagnosis , Accelerometry/instrumentation , Animals , Dogs , Female , Gait , Male
7.
Vet Comp Orthop Traumatol ; 22(6): 448-54, 2009.
Article in English | MEDLINE | ID: mdl-19876520

ABSTRACT

Back problems are important contributors to poor performance in sport horses. It has been shown that kinematic analysis can differentiate horses with back problems from asymptomatic horses. The underlying mechanism can, however, only be identified in a uniform, experimental setting. Our aim was to determine if induction of back pain in a well-defined site would result in a consistent change in back movement. Back kinematics were recorded at a walk and trot on a treadmill. Unilateral back pain was then induced by injecting lactic acid into the left longissimus dorsi muscle. Additional measurements were done subsequent to the injections. Data were captured during steady state locomotion at 240 Hz using an infrared-based gait analysis system. After the injections, the caudal thoracic back was more extended at both gaits. The back was also bent more to the left at both gaits. However, at the walk, there was a reversed pattern after a week with bending of the back to the unaffected side. Horses with identical back injuries appear to show similar changes in their back kinematics, as compared to the asymptomatic condition. Unilateral back pain seems to result in an increased extension of the back, as well as compensatory lateral movements. Back movements are complex and subtle, and changes are difficult to detect with the human eye. Present-day gait analysis systems can identify changes in the back movement, and knowledge of the relationship between such changes and the site of injury will be of help in better localising and diagnosing disorders of the equine back.


Subject(s)
Back Pain/veterinary , Horse Diseases/chemically induced , Animals , Back Pain/chemically induced , Biomechanical Phenomena , Female , Gait , Horses , Lactic Acid/toxicity
8.
Equine Vet J ; 41(3): 274-9, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19469235

ABSTRACT

REASONS FOR PERFORMING STUDY: Dressage involves training of the horse with the head and neck placed in a position defined by the rider. The best position for dressage training is currently under debate among riders and trainers, but there are few scientific data available to confirm or disprove the different views. OBJECTIVE: To evaluate the kinematic effects of different head and neck positions (HNPs) in elite dressage horses ridden at trot. METHODS: Seven high-level dressage horses were subjected to kinetic and kinematic measurements when ridden on a treadmill with the head and neck in 5 different positions. RESULTS: Compared to free trot on loose reins the HNP desired for collected trot at dressage competitions increased T6 vertical excursion, increased sacral flexion and decreased limb retraction after lift-off. Further increasing head or head and neck flexion caused few additional changes while an extremely elevated neck position increased hindlimb flexion and lumbar back extension during stance, increased hindlimb flexion during swing and further increased trunk vertical excursion. CONCLUSIONS: The movements of the horse are significantly different when ridden on loose reins compared to the position used in collected trot. The exact degree of neck flexion is, however, not consistently correlated to the movements of the horse's limbs and trunk at collected trot. An extremely elevated neck position can produce some effects commonly associated with increased degree of collection, but the increased back extension observed with this position may place the horse at risk of injury if ridden in this position for a prolonged period. POTENTIAL RELEVANCE: Head and neck positions influence significantly the kinematics of the ridden horse. It is important for riders and trainers to be aware of these effects in dressage training.


Subject(s)
Gait/physiology , Head , Hindlimb/physiology , Horses/physiology , Neck , Animals , Biomechanical Phenomena
9.
Equine Vet J ; 41(3): 297-300, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19469239

ABSTRACT

REASONS FOR PERFORMING STUDY: Treadmill locomotion is frequently used for training of sport horses, for diagnostic purposes and for research. Identification of the possible biomechanical differences and similarities between the back movement during treadmill (T) and over ground (O) locomotion is essential for the correct interpretation of research results. OBJECTIVES: To compare the kinematics of the thoracolumbar vertebral column in treadmill and over ground locomotion in healthy horses. METHODS: Six sound Dutch Warmblood horses trotted on a T and O during 10 s at their own preferred velocity (mean +/- s.d. 3.6 +/- 0.3 m/s T and 3.6 +/- 0.1 m/s O), which was the same in both conditions. Kinematics of the vertebral column was captured by infrared cameras using reflective skin markers attached over the spinous processes of selected vertebrae and other locations. Flexion-extension and lateral bending range of motion (ROM), angular motion pattern (AMP) and intravertebral pattern symmetry (IVPS) of 5 vertebral angles (T6-T10-T13, T10-T13-T17, T13-T17-L1, T17-L1-L3 and L1-L3-15) were calculated. Neck angle, linear and temporal stride parameters and protraction-retraction angles of the limbs were also calculated. RESULTS: The vertical ROM (flexion-extension) was similar in both conditions, but the horizontal ROM (lateral bending) of the lumbar angles T17-L1-L3 and L1-L3-L5 was less during T locomotion (mean +/- s.d. difference of 1.8 +/- 0.6 and 1.7 +/- 0.9 degrees, respectively, P > 0.05). During O locomotion, the symmetry pattern of the lumbar vertebral angles was diminished from 0.9 to 0.7 (1 = 100% symmetry) indicating increased irregularity of the movement (P > 0.05). No differences were found in the basic linear and temporal stride parameters and neck angle. POTENTIAL RELEVANCE: Vertebral kinematics during treadmill locomotion is not identical to over ground locomotion, but the differences are minor. During treadmill locomotion lumbar motion is less, and caution should be therefore taken when interpreting lumbar kinematics.


Subject(s)
Back/physiology , Gait/physiology , Horses/physiology , Animals , Biomechanical Phenomena , Exercise Test
10.
Equine Vet J ; 40(2): 147-52, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18089465

ABSTRACT

REASON FOR PERFORMING STUDY: There are no detailed studies describing a relationship between hindlimb lameness and altered motion of the back. OBJECTIVES: To quantify the effect of induced subtle hindlimb lameness on thoracolumbar kinematics in the horse. METHODS: Kinematics of 6 riding horses were measured during walk and trot on a treadmill before and during application of pressure on the sole of the left hindlimb using a well-established sole pressure model. Reflective markers were located at anatomical landmarks on the limbs, back, head and neck for kinematic recordings. Ground reaction forces (GRF) in individual limbs were calculated from kinematics to detect changes in loading of the limbs. RESULTS: When pressure on the sole of the hindlimb was present, horses were judged as lame (grade 2 on the AAEP scale 1-5) by an experienced clinician. No significant unloading of this limb was found in the group of horses (unloading was observed in 4 animals, but was not detectable in the other 2), but statistically significant effects on back kinematics were detected. The overall flexion-extension (FE) range of motion (ROM) of the vertebral column was increased at walk, especially in the thoracic segments. Axial rotation (AR) ROM of the pelvis was also increased. At trot, the FE ROM was decreased only in the segment L3-L5-S3. During the stance phase of the lame limb, the segment T6-T10-T13 was more flexed and the neck was lowered at both gaits; the thoracolumbar segments were more extended at walk and trot. There were no significant changes in the stride length or protraction-retraction angles in any of the limbs. CONCLUSIONS: Subtle hindlimb lameness provoked slight but detectable changes in thoracolumbar kinematics. The subtle lameness induced in this study resulted in hyperextension and increased ROM of the thoracolumbar back, but also in decreased ROM of the lumbosacral segment and rotational motion changes of the pelvis. POTENTIAL RELEVANCE: Even subtle lameness can result in changes in back kinematics, which emphasises the intricate link between limb function and thoracolumbar motion. It may be surmised that, when chronically present, subtle lameness induces back dysfunction.


Subject(s)
Adaptation, Physiological , Gait/physiology , Horse Diseases/physiopathology , Lameness, Animal/physiopathology , Lumbar Vertebrae , Thoracic Vertebrae , Animals , Biomechanical Phenomena , Exercise Test/veterinary , Hindlimb , Horses , Locomotion , Range of Motion, Articular/physiology , Weight-Bearing
11.
Equine Vet J ; 40(2): 153-9, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18089466

ABSTRACT

REASON FOR PERFORMING STUDY: Although there is anecdotal evidence of clinical effectiveness of chiropractic in treatment of equine back pain, little scientific work has been reported on the subject. OBJECTIVES: To quantify the effect of chiropractic manipulations on back and limb kinematics in horse locomotion. METHODS: Kinematics of 10 Warmblood horses were measured over ground at walk and trot at their own, preferred speed before, and one hour and 3 weeks after chiropractic treatment that consisted of manipulations of the back, neck and pelvic area. Speed was the same during all measurements for each horse. RESULTS: Chiropractic manipulations resulted in increased flexion-extension range of motion (ROM) (P<0.05) at trot in the vertebral angular segments: T10-T13-T17 (0.3 degrees ) and T13-T17-L1 (0.8 degrees ) one hour after treatment, but decreased ROM after 3 weeks. The angular motion patterns (AMPs) of the same segments showed increased flexion at both gaits one hour after treatment (both angles 0.2 degrees at walk and 0.3 degrees at trot, P<0.05) and 3 weeks after treatment (1.0 degrees and 2.4 degrees at walk and 1.9 degrees and 2.9 degrees at trot, P<0.05). The lumbar (L3 and L5) area showed increased flexion after one hour (both angles 0.3 degrees at walk and 0.4 degrees at trot P<0.05), but increased extension after 3 weeks (1.4 degrees and 1.2 degrees , at trot only, P<0.05). There were no detectable changes in lateral bending AMPs. The inclination of the pelvis was reduced at trot one hour (1.6 degrees ) and 3 weeks (3 degrees ) after treatment (P<0.05). The mean axial rotation of the pelvis was more symmetrical 3 weeks after the treatment at both gaits (P<0.05). There were no changes in limb angles at walk and almost no changes at trot. CONCLUSIONS: The main overall effect of the chiropractic manipulations was a less extended thoracic back, a reduced inclination of the pelvis and improvement of the symmetry of the pelvic motion pattern. POTENTIAL RELEVANCE: Chiropractic manipulations elicit slight but significant changes in thoracolumbar and pelvic kinematics. Some of the changes are likely to be beneficial, but clinical trials with increased numbers of horses and longer follow-up are needed.


Subject(s)
Back Pain/veterinary , Gait/physiology , Horse Diseases/therapy , Manipulation, Chiropractic/veterinary , Range of Motion, Articular/physiology , Animals , Back/physiology , Back Pain/therapy , Biomechanical Phenomena , Horses , Manipulation, Chiropractic/methods , Stress, Mechanical , Time Factors , Treatment Outcome , Veterinary Medicine/methods , Weight-Bearing
12.
Equine Vet J ; 39(3): 197-201, 2007 May.
Article in English | MEDLINE | ID: mdl-17520968

ABSTRACT

REASONS FOR PERFORMING STUDY: Lameness has often been suggested to result in altered movement of the back, but there are no detailed studies describing such a relationship in quantitative terms. OBJECTIVES: To quantify the effect of induced subtle forelimb lameness on thoracolumbar kinematics in the horse. METHODS: Kinematics of 6 riding horses was measured at walk and at trot on a treadmill before and after the induction of reversible forelimb lameness grade 2 (AAEP scale 1-5). Ground reaction forces (GRF) for individual limbs were calculated from kinematics. RESULTS: The horses significantly unloaded the painful limb by 11.5% at trot, while unloading at walk was not significant. The overall flexion-extension range of back motion decreased on average by 0.2 degrees at walk and increased by 3.3 degrees at trot (P<0.05). Changes in angular motion patterns of vertebral joints were noted only at trot, with an increase in flexion of 0.9 degrees at T10 (i.e. angle between T6, T10 and T13) during the stance phase of the sound diagonal and an increase in extension of the thoracolumbar area during stance of the lame diagonal (0.7degrees at T13, 0.8 degres at T17, 0.5 degres at L1, 0.4 degrees at L3 and 0.3 degrees at L5) (P<0.05). Lameness further caused a lateral bending of the cranial thoracic vertebral column towards the lame side (1.3 degrees at T10 and 0.9 degrees at T13) (P<0.05) during stance of the lame diagonal. CONCLUSIONS: Both range of motion and vertebral angular motion patterns are affected by subtle forelimb lameness. At walk, the effect is minimal, at trot the horses increased the vertebral range of motion and changed the pattern of thoracolumbar motion in the sagittal and horizontal planes, presumably in an attempt to move the centre of gravity away from the lame side and reduce the force on the affected limb. POTENTIAL RELEVANCE: Subtle forelimb lameness affects thoracolumbar kinematics. Future studies should aim at elucidating whether the altered movement patterns lead to back and/or neck dysfunction in the case of chronic lameness.


Subject(s)
Adaptation, Physiological , Gait/physiology , Horse Diseases/physiopathology , Lameness, Animal/physiopathology , Lumbar Vertebrae , Thoracic Vertebrae , Animals , Biomechanical Phenomena , Exercise Test/veterinary , Forelimb , Horses , Locomotion/physiology , Range of Motion, Articular/physiology , Stress, Mechanical , Weight-Bearing/physiology
13.
Equine Vet J Suppl ; (36): 445-51, 2006 Aug.
Article in English | MEDLINE | ID: mdl-17402464

ABSTRACT

REASONS FOR PERFORMING STUDY: In many equestrian activities a specific position of head and/or neck is required that is dissimilar to the natural position. There is controversy about the effects of these positions on locomotion pattern, but few quantitative data are available. OBJECTIVES: To quantify the effects of 5 different head and neck positions on thoracolumbar kinematics of the horse. METHODS: Kinematics of 7 high level dressage horses were measured walking and trotting on an instrumented treadmill with the head and neck in the following positions: HNP2 = neck raised, bridge of the nose in front of the vertical; HNP3 = as HNP2 with bridge of the nose behind the vertical; HNP4 = head and neck lowered, nose behind the vertical; HNP5 = head and neck in extreme high position; HNP6 = head and neck forward and downward. HNP1 was a speed-matched control (head and neck unrestrained). RESULTS: The head and neck positions affected only the flexion-extension motion. The positions in which the neck was extended (HNP2, 3, 5) increased extension in the anterior thoracic region, but increased flexion in the posterior thoracic and lumbar region. For HNP4 the pattern was the opposite. Positions 2, 3 and 5 reduced the flexion-extension range of motion (ROM) while HNP4 increased it. HNP5 was the only position that negatively affected intravertebral pattern symmetry and reduced hindlimb protraction. The stride length was significantly reduced at walk in positions 2, 3, 4 and 5. CONCLUSIONS: There is a significant influence of head/neck position on back kinematics. Elevated head and neck induce extension in the thoracic region and flexion in the lumbar region; besides reducing the sagittal range of motion. Lowered head and neck produces the opposite. A very high position of the head and neck seems to disturb normal kinematics. POTENTIAL RELEVANCE: This study provides quantitative data on the effect of head/neck positions on thoracolumbar motion and may help in discussions on the ethical acceptability of some training methods.


Subject(s)
Head/physiology , Horses/physiology , Neck/physiology , Posture/physiology , Animals , Biomechanical Phenomena , Lumbar Vertebrae/physiology , Male , Physical Conditioning, Animal/physiology , Sports , Thoracic Vertebrae/physiology , Weight-Bearing
14.
Tex Heart Inst J ; 11(4): 352-62, 1984 Dec.
Article in English | MEDLINE | ID: mdl-15226875

ABSTRACT

The purpose of the present work is to evaluate the action of a benzofuran derivative, Amiodarone, on an experimental acute infarction model. Six pigs were intravenously administered 1 mg/kg Amiodarone (A) 20 minutes before inducing ischemia (I) by occlusion of the anterior descending coronary artery, which was maintained for 90 minutes. A similar dose level was repeated 20 minutes before ligation release (R). Similarly, another six animals received a placebo and formed the Control Group (C). The extent of myocardial injury was assessed by summations of ST segments (Sigma ST) and R (Sigma R) and Q (Sigma Q) waves of electrocardiographic epicardial mappings, as well as by serum levels for SGOT and LDH. Systemic blood pressure, pulmonary pressure, right atrial pressure, systemic resistance and cardiac output were also controlled. Two hundred and ten minutes after R, the animal was sacrificed for the purpose of carrying out morphological and histochemical studies. No significant differences were observed in the blood pressure of either group. During I, systemic resistance values suffered a drop in the Amiodarone Group A, whereas they increased in both groups after reperfusion. Pulmonary pressure was higher in Group A. Cardiac output showed a similar behavior in both groups up to R, when it significantly decreased in animals receiving Amiodarone. The Sigma ST and the Sigma Q were higher in the Control Group C, whereas the Sigma R was higher in Group A. The SGOT and LDH levels were higher during R in Group C. Histochemistry showed a higher activity for SDH and LDH in treated animals. Due to its action on afterload, its contractility and its direct myocardial action, Amiodarone limited the extent of necrosis and increased the recoverable amount of myocardium.

SELECTION OF CITATIONS
SEARCH DETAIL
...