Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 272
Filter
1.
Environ Sci Technol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989600

ABSTRACT

Transition-metal dichalcogenides (TMDs) have shown great promise as selective and high-capacity sorbents for Hg(II) removal from water. Yet, their design should consider safe disposal of spent materials, particularly the subsequent formation of methylmercury (MeHg), a highly potent and bioaccumulative neurotoxin. Here, we show that microbial methylation of mercury bound to MoS2 nanosheets (a representative TMD material) is significant under anoxic conditions commonly encountered in landfills. Notably, the methylation potential is highly dependent on the phase compositions of MoS2. MeHg production was higher for 1T MoS2, as mercury bound to this phase primarily exists as surface complexes that are available for ligand exchange. In comparison, mercury on 2H MoS2 occurs largely in the form of precipitates, particularly monovalent mercury minerals (e.g., Hg2MoO4 and Hg2SO4) that are minimally bioavailable. Thus, even though 1T MoS2 is more effective in Hg(II) removal from aqueous solution due to its higher adsorption affinity and reductive ability, it poses a higher risk of MeHg formation after landfill disposal. These findings highlight the critical role of nanoscale surfaces in enriching heavy metals and subsequently regulating their bioavailability and risks and shed light on the safe design of heavy metal sorbent materials through surface structural modulation.

2.
Environ Sci Technol ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39021055

ABSTRACT

Transition metal catalysts in soil constituents (e.g., clays) can significantly decrease the pyrolytic treatment temperature and energy requirements for efficient removal of polycyclic aromatic hydrocarbons (PAHs) and, thus, lead to more sustainable remediation of contaminated soils. However, the catalytic mechanism and its rate-limiting steps are not fully understood. Here, we show that PAHs with lower ionization potential (IP) are more easily removed by pyro-catalytic treatment when deposited onto Fe-enriched bentonite (1.8% wt. ion-exchanged content). We used four PAHs with decreasing IP: naphthalene > pyrene > benz(a)anthracene > benzo(g,h,i)perylene. Density functional theory (DFT) calculations showed that lower IP results in stronger PAH adsorption to Fe(III) sites and easier transfer of π-bond electrons from the aromatic ring to Fe(III) at the onset of pyrolysis. We postulate that the formation of aromatic radicals via this direct electron transfer (DET) mechanism is the initiation step of a cascade of aromatic polymerization reactions that eventually convert PAHs to a non-toxic and fertility-preserving char, as we demonstrated earlier. However, IP is inversely correlated with PAH hydrophobicity (log Kow), which may limit access to the Fe(III) catalytic sites (and thus DET) if it increases PAH sorption to soil OM. Thus, ensuring adequate contact between sorbed PAHs and the catalytic reaction centers represents an engineering challenge to achieve faster remediation with a lower carbon footprint via pyro-catalytic treatment.

3.
J Hazard Mater ; 476: 134974, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38905973

ABSTRACT

Despite the growing prevalence of nanoplastics in drinking water distribution systems, the collective influence of nanoplastics and background nanoparticles on biofilm formation and microbial risks remains largely unexplored. Here, we demonstrate that nano-sized polystyrene modified with carboxyl groups (nPS) and background magnetite (nFe3O4) nanoparticles at environmentally relevant concentrations can collectively stimulate biofilm formation and prompt antibiotic resistance. Combined exposure of nPS and nFe3O4 by P. aeruginosa biofilm cells stimulated intracellular reactive oxidative species (ROS) production more significantly compared with individual exposure. The resultant upregulation of quorum sensing (QS) and c-di-GMP signaling pathways enhanced the biosynthesis of polysaccharides by 50 %- 66 % and increased biofilm biomass by 36 %- 40 % relative to unexposed control. Consistently, biofilm mechanical stability (measured as Young's modulus) increased by 7.2-9.1 folds, and chemical stress resistance (measured with chlorine disinfection) increased by 1.4-2.0 folds. For P. aeruginosa, the minimal inhibitory concentration of different antibiotics also increased by 1.1-2.5 folds after combined exposure. Moreover, at a microbial community-wide level, metagenomic analysis revealed that the combined exposure enhanced the multi-species biofilm's resistance to chlorine, enriched the opportunistic pathogenic bacteria, and promoted their virulence and antibiotic resistance. Overall, the enhanced formation of biofilms (that may harbor opportunistic pathogens) by nanoplastics and background nanoparticles is an overlooked phenomenon, which may jeopardize the microbial safety of drinking water distribution systems.

4.
Environ Sci Technol ; 58(26): 11833-11842, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38910294

ABSTRACT

Atomic hydrogen (H*) is a powerful and versatile reductant and has tremendous potential in the degradation of oxidized pollutants (e.g., chlorinated solvents). However, its application for groundwater remediation is hindered by the scavenging side reaction of H2 evolution. Herein, we report that a composite material (Fe0@Fe-N4-C), consisting of zerovalent iron (Fe0) nanoparticles and nitrogen-coordinated single-atom Fe (Fe-N4), can effectively steer H* toward reductive dechlorination of trichloroethylene (TCE), a common groundwater contaminant and primary risk driver at many hazardous waste sites. The Fe-N4 structure strengthens the bond between surface Fe atoms and H*, inhibiting H2 evolution. Nonetheless, H* is available for dechlorination, as the adsorption of TCE weakens this bond. Interestingly, H* also enhances electron delocalization and transfer between adsorbed TCE and surface Fe atoms, increasing the reactivity of adsorbed TCE with H*. Consequently, Fe0@Fe-N4-C exhibits high electron selectivity (up to 86%) toward dechlorination, as well as a high TCE degradation kinetic constant. This material is resilient against water matrix interferences, achieving long-lasting performance for effective TCE removal. These findings shed light on the utilization of H* for the in situ remediation of groundwater contaminated with chlorinated solvents, by rational design of earth-abundant metal-based single-atom catalysts.


Subject(s)
Groundwater , Iron , Solvents , Water Pollutants, Chemical , Groundwater/chemistry , Iron/chemistry , Solvents/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen/chemistry , Trichloroethylene/chemistry , Halogenation , Environmental Restoration and Remediation/methods , Oxidation-Reduction , Adsorption
5.
Environ Sci Technol ; 58(22): 9887-9895, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38775679

ABSTRACT

Mercury is a ubiquitous heavy-metal pollutant and poses serious ecological and human-health risks. There is an ever-growing demand for rapid, sensitive, and selective detection of mercury in natural waters, particularly for regions lacking infrastructure specialized for mercury analysis. Here, we show that a sensor based on multi-emission carbon dots (M-CDs) exhibits ultrahigh sensing selectivity toward Hg(II) in complex environmental matrices, tested in the presence of a range of environmentally relevant metal/metalloid ions as well as natural and artificial ligands, using various real water samples. By incorporating structural features of calcein and folic acid that enable tunable emissions, the M-CDs couple an emission enhancement at 432 nm and a simultaneous reduction at 521 nm, with the intensity ratio linearly related to the Hg(II) concentration up to 1200 µg/L, independent of matrix compositions. The M-CDs have a detection limit of 5.6 µg/L, a response time of 1 min, and a spike recovery of 94 ± 3.7%. The intensified emission is attributed to proton transfer and aggregation-induced emission enhancement, whereas the quenching is due to proton and electron transfer. These findings also have important implications for mercury identification in other complex matrices for routine, screening-level food safety and health management practices.


Subject(s)
Carbon , Mercury , Water Pollutants, Chemical , Mercury/analysis , Carbon/chemistry , Water Pollutants, Chemical/analysis , Fluorescence , Quantum Dots/chemistry , Water/chemistry
6.
Environ Sci Technol ; 58(16): 7186-7195, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38598770

ABSTRACT

Remediation of large and dilute plumes of groundwater contaminated by oxidized pollutants such as chromate is a common and difficult challenge. Herein, we show that in situ formation of FeS nanoparticles (using dissolved Fe(II), S(-II), and natural organic matter as a nucleating template) results in uniform coating of aquifer material to create a regenerable reactive zone that mitigates Cr(VI) migration. Flow-through columns packed with quartz sand are amended first with an Fe2+ solution and then with a HS- solution to form a nano-FeS coating on the sand, which does not hinder permeability. This nano-FeS coating effectively reduces and immobilizes Cr(VI), forming Fe(III)-Cr(III) coprecipitates with negligible detachment from the sand grains. Preconditioning the sand with humic or fulvic acid (used as model natural organic matter (NOM)) further enhances Cr(VI) sequestration, as NOM provides additional binding sites of Fe2+ and mediates both nucleation and growth of FeS nanoparticles, as verified with spectroscopic and microscopic evidence. Reactivity can be easily replenished by repeating the procedures used to form the reactive coating. These findings demonstrate that such enhancement of attenuation capacity can be an effective option to mitigate Cr(VI) plume migration and exposure, particularly when tackling contaminant rebound post source remediation.


Subject(s)
Chromium , Groundwater , Oxidation-Reduction , Water Pollutants, Chemical , Groundwater/chemistry , Chromium/chemistry , Water Pollutants, Chemical/chemistry , Nanoparticles/chemistry , Environmental Restoration and Remediation/methods , Humic Substances , Ferrous Compounds/chemistry , Benzopyrans/chemistry
7.
Trends Microbiol ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38433027

ABSTRACT

Bacteriophages (phages) play a vital role in ecosystem functions by influencing the composition, genetic exchange, metabolism, and environmental adaptation of microbial communities. With recent advances in sequencing technologies and bioinformatics, our understanding of the ecology and evolution of phages in stressful environments has substantially expanded. Here, we review the impact of physicochemical environmental stress on the physiological state and community dynamics of phages, the adaptive strategies that phages employ to cope with environmental stress, and the ecological effects of phage-host interactions in stressful environments. Specifically, we highlight the contributions of phages to the adaptive evolution and functioning of microbiomes and suggest that phages and their hosts can maintain a mutualistic relationship in response to environmental stress. In addition, we discuss the ecological consequences caused by phages in stressful environments, encompassing biogeochemical cycling. Overall, this review advances an understanding of phage ecology in stressful environments, which could inform phage-based strategies to improve microbiome performance and ecosystem resilience and resistance in natural and engineering systems.

8.
J Hazard Mater ; 467: 133753, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38350321

ABSTRACT

Peroxydisulfate (PDS)-based Fenton-like reactions are promising advanced oxidation processes (AOPs) to degrade recalcitrant organic water pollutants. Current research predominantly focuses on augmenting the generation of reactive species (e.g., surface-activated PDS complexes (PDS*) to improve treatment efficiency, but overlooks the potential benefits of enhancing the reactivity of these species. Here, we enhanced PDS* generation and reactivity by incorporating Zn into CuO catalyst lattice, which resulted in 99% degradation of 4-chlorophenol within only 10 min. Zn increased PDS* generation by nearly doubling PDS adsorption while maintaining similar PDS to PDS* conversion efficiency, and induced higher PDS* reactivity than the common catalyst CuO, as indicated by a 4.1-fold larger slope between adsorbed PDS and open circuit potential of a catalytic electrode. Cu-O-Zn formation upshifts the d-band center of Cu sites and lowers the energy barrier for PDS adsorption and sulfate desorption, resulting in enhanced PDS* generation and reactivity. Overall, this study informs strategies to enhance PDS* reactivity and design highly active catalysts for efficient AOPs.

9.
Environ Sci Technol ; 58(1): 3-16, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38193155

ABSTRACT

Water reuse is rapidly becoming an integral feature of resilient water systems, where municipal wastewater undergoes advanced treatment, typically involving a sequence of ultrafiltration (UF), reverse osmosis (RO), and an advanced oxidation process (AOP). When RO is used, a concentrated waste stream is produced that is elevated in not only total dissolved solids but also metals, nutrients, and micropollutants that have passed through conventional wastewater treatment. Management of this RO concentrate─dubbed municipal wastewater reuse concentrate (MWRC)─will be critical to address, especially as water reuse practices become more widespread. Building on existing brine management practices, this review explores MWRC management options by identifying infrastructural needs and opportunities for multi-beneficial disposal. To safeguard environmental systems from the potential hazards of MWRC, disposal, monitoring, and regulatory techniques are discussed to promote the safety and affordability of implementing MWRC management. Furthermore, opportunities for resource recovery and valorization are differentiated, while economic techniques to revamp cost-benefit analysis for MWRC management are examined. The goal of this critical review is to create a common foundation for researchers, practitioners, and regulators by providing an interdisciplinary set of tools and frameworks to address the impending challenges and emerging opportunities of MWRC management.


Subject(s)
Ultrafiltration , Wastewater , Epichlorohydrin , Nutrients , Water
10.
Environ Sci Technol ; 57(45): 17324-17337, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37930060

ABSTRACT

Phages are increasingly recognized for their importance in microbial aggregates, including their influence on microbial ecosystem services and biotechnology applications. However, the adaptive strategies and ecological functions of phages in different aggregates remain largely unexplored. Herein, we used membrane bioreactors to investigate bacterium-phage interactions and related microbial functions within suspended and attached microbial aggregates (SMA vs AMA). SMA and AMA represent distinct microbial habitats where bacterial communities display distinct patterns in terms of dominant species, keystone species, and bacterial networks. However, bacteria and phages in both aggregates exhibited high lysogenicity, with 60% lysogenic phages in the virome and 70% lysogenic metagenome-assembled genomes of bacteria. Moreover, substantial phages exhibited broad host ranges (34% in SMA and 42% in AMA) and closely interacted with habitat generalist species (43% in SMA and 49% in AMA) as adaptive strategies in stressful operation environments. Following a mutualistic pattern, phage-carried auxiliary metabolic genes (pAMGs; 238 types in total) presumably contributed to the bacterial survival and aggregate stability. The SMA-pAMGs were mainly associated with energy metabolism, while the AMA-pAMGs were mainly associated with antioxidant biosynthesis and the synthesis of extracellular polymeric substances, representing habitat-dependent patterns. Overall, this study advanced our understanding of phage adaptive strategies in microbial aggregate habitats and emphasized the importance of bacterium-phage symbiosis in the stability of microbial aggregates.


Subject(s)
Bacteriophages , Microbiota , Bacteriophages/genetics , Symbiosis , Bacteria/genetics , Metagenome
11.
Environ Sci Technol ; 57(38): 14373-14383, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37683087

ABSTRACT

Transition metal catalysts can significantly enhance the pyrolytic remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Significantly higher pyrene removal efficiency was observed after the pyrolytic treatment of Fe-enriched bentonite (1.8% wt ion-exchanged content) relative to natural bentonite or soil (i.e., 93% vs 48% and 4%) at the unprecedentedly low temperature of 150 °C with only 15 min treatment time. DFT calculations showed that bentonite surfaces with Fe3+ or Cu2+ adsorb pyrene stronger than surfaces with Zn2+ or Na+. Enhanced pyrene adsorption results from increased charge transfer from its aromatic π-bonds to the cation site, which destabilizes pyrene allowing for faster degradation at lower temperatures. UV-Vis and GC-MS analyses revealed pyrene decomposition products in extracts of samples treated at 150 °C, including small aromatic compounds. As the pyrolysis temperature increased above 200 °C, product distribution shifted from extractable compounds to char coating the residue particles. No extractable byproducts were detected after treatment at 400 °C, indicating that char was the final product of pyrene decomposition. Tests with human lung cells showed that extracts of samples pyrolyzed at 150 °C were toxic; thus, high removal efficiency by pyrolytic treatment does not guarantee detoxification. No cytotoxicity was observed for extracts from Fe-bentonite samples treated at 300 °C, inferring that char is an appropriate treatment end point. Overall, we demonstrate that transition metals in clay can catalyze pyrolytic reactions at relatively low temperatures to decrease the energy and contact times required to meet cleanup standards. However, mitigating residual toxicity may require higher pyrolysis temperatures.


Subject(s)
Bentonite , Polycyclic Aromatic Hydrocarbons , Humans , Temperature , Bentonite/chemistry , Pyrolysis , Pyrenes/chemistry , Soil
12.
Water Res ; 244: 120442, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37549546

ABSTRACT

Microbial degradation to remove residual antibiotics in wastewater is of growing interest. However, biological treatment of antibiotics may cause resistance dissemination by mutations and horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). In this study, a Mn(Ⅱ)-oxidizing bacterium (MnOB), Pseudomonas aeruginosa MQ2, simultaneously degraded antibiotics, decreased HGT, and mitigated antibiotic resistance mutation. Intracellular Mn(II) levels increased during manganese oxidation, and biogenic manganese oxides (BioMnOx, including Mn(II), Mn(III) and Mn(IV)) tightly coated the cell surface. Mn(II) bio-oxidation mitigated antibiotic resistance acquisition from an E. coli ARG donor and mitigated antibiotic resistance inducement by decreasing conjugative transfer and mutation, respectively. BioMnOx also oxidized ciprofloxacin (1 mg/L) and tetracycline (5 mg/L), respectively removing 93% and 96% within 24 h. Transcriptomic analysis revealed that two new multicopper oxidase and one peroxidase genes are involved in Mn(II) oxidation. Downregulation of SOS response, multidrug resistance and type Ⅳ secretion system related genes explained that Mn(II) and BioMnOx decreased HGT and mitigated resistance mutation by alleviating oxidative stress, which makes recipient cells more vulnerable to ARG acquisition and mutation. A manganese bio-oxidation based reactor was constructed and completely removed tetracycline with environmental concentration within 4-hour hydraulic retention time. Overall, this study suggests that Mn (II) bio-oxidation process could be exploited to control antibiotic contamination and mitigate resistance propagation during water treatment.


Subject(s)
Anti-Bacterial Agents , Manganese , Anti-Bacterial Agents/pharmacology , Escherichia coli/metabolism , Oxidation-Reduction , Oxides/metabolism , Manganese Compounds/metabolism , Tetracycline
13.
Environ Sci Technol ; 57(33): 12153-12179, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37535865

ABSTRACT

Urbanization and industrialization have exerted significant adverse effects on water quality, resulting in a growing need for reliable and eco-friendly treatment technologies. Persulfate (PS)-based advanced oxidation processes (AOPs) are emerging as viable technologies to treat challenging industrial wastewaters or remediate groundwater impacted by hazardous wastes. While the generated reactive species can degrade a variety of priority organic contaminants through radical and nonradical pathways, there is a lack of systematic and in-depth comparison of these pathways for practical implementation in different treatment scenarios. Our comparative analysis of reaction rate constants for radical vs. nonradical species indicates that radical-based AOPs may achieve high removal efficiency of organic contaminants with relatively short contact time. Nonradical AOPs feature advantages with minimal water matrix interference for complex wastewater treatments. Nonradical species (e.g., singlet oxygen, high-valent metals, and surface activated PS) preferentially react with contaminants bearing electron-donating groups, allowing enhancement of degradation efficiency of known target contaminants. For byproduct formation, analytical limitations and computational chemistry applications are also considered. Finally, we propose a holistically estimated electrical energy per order of reaction (EE/O) parameter and show significantly higher energy requirements for the nonradical pathways. Overall, these critical comparisons help prioritize basic research on PS-based AOPs and inform the merits and limitations of system-specific applications.


Subject(s)
Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Wastewater , Water Purification/methods
14.
Sci Total Environ ; 898: 165347, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37419343

ABSTRACT

Dissolved black carbon (DBC) is an important constituent of the natural organic carbon pool, influencing the global carbon cycling and the fate processes of many pollutants. In this work, we discovered that DBC released from biochar has intrinsic peroxidase-like activity. DBC samples were derived from four biomass stocks, including corn, peanut, rice, and sorghum straws. All DBC samples catalyze H2O2 decomposition into hydroxyl radicals, as determined by the electron paramagnetic resonance and the molecular probe. Similar to enzymes that exhibit saturation kinetics, the steady-state reaction rates follow the Michaelis-Menten equation. The peroxidase-like activity of DBC is controlled by the ping-pong mechanism, as suggested by parallel Lineweaver-Burk plots. Its activity increases with temperature from 10 to 80 °C and has an optimum at pH 5. The peroxidase-like activity of DBC is positively correlated with its aromaticity as aromatics can stabilize the reactive intermediates. The active sites in DBC also involve oxygen-containing groups, as inferred by increased activity after the chemical reduction of carbonyls. The peroxidase-like activity of DBC has significant implications for biogeochemical processing of carbon and potential health and ecological impacts of black carbon. It also highlights the need to advance the understanding of the occurrence and role of organic catalysts in natural systems.


Subject(s)
Charcoal , Hydrogen Peroxide , Charcoal/chemistry , Carbon , Soot , Peroxidases
15.
Environ Sci Technol ; 57(26): 9713-9721, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37310875

ABSTRACT

Surveillance of antibiotic resistance genes (ARGs) has been increasingly conducted in environmental sectors to complement the surveys in human and animal sectors under the "One-Health" framework. However, there are substantial challenges in comparing and synthesizing the results of multiple studies that employ different test methods and approaches in bioinformatic analysis. In this article, we consider the commonly used quantification units (ARG copy per cell, ARG copy per genome, ARG density, ARG copy per 16S rRNA gene, RPKM, coverage, PPM, etc.) for profiling ARGs and suggest a universal unit (ARG copy per cell) for reporting such biological measurements of samples and improving the comparability of different surveillance efforts.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Animals , Humans , Anti-Bacterial Agents/pharmacology , RNA, Ribosomal, 16S/genetics , Drug Resistance, Microbial/genetics , Metagenomics/methods
16.
ISME Commun ; 3(1): 46, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142716

ABSTRACT

Prokaryotic antiviral systems are important mediators for prokaryote-phage interactions, which have significant implications for the survival of prokaryotic community. However, the prokaryotic antiviral systems under environmental stress are poorly understood, limiting the understanding of microbial adaptability. Here, we systematically investigated the profile of the prokaryotic antiviral systems at the community level and prokaryote-phage interactions in the drinking water microbiome. Chlorine disinfectant was revealed as the main ecological driver for the difference in prokaryotic antiviral systems and prokaryote-phage interactions. Specifically, the prokaryotic antiviral systems in the microbiome exhibited a higher abundance, broader antiviral spectrum, and lower metabolic burden under disinfectant stress. Moreover, significant positive correlations were observed between phage lysogenicity and enrichment of antiviral systems (e.g., Type IIG and IV restriction-modification (RM) systems, and Type II CRISPR-Cas system) in the presence of disinfection, indicating these antiviral systems might be more compatible with lysogenic phages and prophages. Accordingly, there was a stronger prokaryote-phage symbiosis in disinfected microbiome, and the symbiotic phages carried more auxiliary metabolic genes (AMGs) related to prokaryotic adaptability as well as antiviral systems, which might further enhance prokaryote survival in drinking water distribution systems. Overall, this study demonstrates that the prokaryotic antiviral systems had a close association with their symbiotic phages, which provides novel insights into prokaryote-phage interactions and microbial environmental adaptation.

17.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37104065

ABSTRACT

Fusobacterium varium has been generally overlooked in cattle rumen microbiome studies relative to the presumably more abundant liver abscess-causing Fusobacterium necrophorum. However, F. varium was found to be more abundant in the rumen fluid of cattle and under culture conditions tailored to enrich F. necrophorum. Using near-full length 16S ribosomal ribonucleic acid sequencing, we demonstrate that F. varium grows under restrictive conditions commonly used to enumerate F. necrophorum, suggesting that previous F. necrophorum abundance assessment may have been inaccurate and that F. varium may be an underestimated member of the ruminal bacterial community. Fusobacterium varium were not as susceptible as F. necrophorum to in-feed antibiotics conventionally used in feedlots. Exposure to tylosin, the current gold standard for liver abscess reduction strategies in cattle, consistently hindered growth of the F. necrophorum strains tested by over 67% (P < 0.05) relative to the unexposed control. In contrast, F. varium strains were totally or highly resistant (0%-13% reduction in maximum yield, P < 0.05). Monensin, an ionophore antibiotic, had greater inhibitory activity against F. necrophorum than F. varium. Finally, preliminary genomic analysis of two F. varium isolates from the rumen revealed the presence of virulence genes related to those of pathogenic human F. varium isolates associated with active invasion of mammalian cells. The data presented here encourage further investigation into the ecological role of F. varium within the bovine rumen and potential role in liver abscess development, and proactive interventions.


The conventional method of liver abscess prevention in feedlot cattle is in-feed use of tylosin to target Fusobacterium necrophorum, which has been presumed to be the most common Fusobacterium species within the ruminal compartment. Our investigation into ruminal Fusobacterium, however, revealed a different species, Fusobacterium varium, to be abundant and ubiquitous in ruminal content samples. Furthermore, growth conditions tailored to enrich F. necrophorum consistently promoted growth of F. varium, and the bovine isolates tested had much lower susceptibilities to the commonly fed antibiotics tylosin and monensin compared to F. necrophorum. Fusobacterium varium is an emerging pathogen in humans and preliminary genome sequencing of two ruminal F. varium isolates revealed genes linked to pathogenicity. While the ecological role of F. varium in the rumen is still not fully understood, our findings draw attention to this pathogen and its potential implication in liver abscesses.


Subject(s)
Cattle Diseases , Liver Abscess , Humans , Cattle , Animals , Rumen/microbiology , Fusobacterium/genetics , Anti-Bacterial Agents/pharmacology , Liver Abscess/veterinary , Liver Abscess/microbiology , Cattle Diseases/microbiology , Mammals
18.
Angew Chem Int Ed Engl ; 62(27): e202303267, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37099268

ABSTRACT

High-valent metal-oxo (HVMO) species are powerful non-radical reactive species that enhance advanced oxidation processes (AOPs) due to their long half-lives and high selectivity towards recalcitrant water pollutants with electron-donating groups. However, high-valent cobalt-oxo (CoIV =O) generation is challenging in peroxymonosulfate (PMS)-based AOPs because the high 3d-orbital occupancy of cobalt would disfavor its binding with a terminal oxygen ligand. Herein, we propose a strategy to construct isolated Co sites with unique N1 O2 coordination on the Mn3 O4 surface. The asymmetric N1 O2 configuration is able to accept electrons from the Co 3d-orbital, resulting in significant electronic delocalization at Co sites for promoted PMS adsorption, dissociation and subsequent generation of CoIV =O species. CoN1 O2 /Mn3 O4 exhibits high intrinsic activity in PMS activation and sulfamethoxazole (SMX) degradation, highly outperforming its counterpart with a CoO3 configuration, carbon-based single-atom catalysts with CoN4 configuration, and commercial cobalt oxides. CoIV =O species effectively oxidize the target contaminants via oxygen atom transfer to produce low-toxicity intermediates. These findings could advance the mechanistic understanding of PMS activation at the molecular level and guide the rational design of efficient environmental catalysts.

19.
ISME J ; 17(7): 1004-1014, 2023 07.
Article in English | MEDLINE | ID: mdl-37069233

ABSTRACT

The earthworm gut virome influences the structure and function of the gut microbiome, which in turn influences worm health and ecological functions. However, despite its ecological and soil quality implications, it remains elusive how earthworm intestinal phages respond to different environmental stress, such as soil pollution. Here we used metagenomics and metatranscriptomics to investigate interactions between the worm intestinal phages and their bacteria under different benzo[a]pyrene (BaP) concentrations. Low-level BaP (0.1 mg kg-1) stress stimulated microbial metabolism (1.74-fold to control), and enhanced the antiphage defense system (n = 75) against infection (8 phage-host pairs). Low-level BaP exposure resulted in the highest proportion of lysogenic phages (88%), and prophages expressed auxiliary metabolic genes (AMGs) associated with nutrient transformation (e.g., amino acid metabolism). In contrast, high-level BaP exposure (200 mg kg-1) disrupted microbial metabolism and suppressed the antiphage systems (n = 29), leading to the increase in phage-bacterium association (37 phage-host pairs) and conversion of lysogenic to lytic phages (lysogenic ratio declined to 43%). Despite fluctuating phage-bacterium interactions, phage-encoded AMGs related to microbial antioxidant and pollutant degradation were enriched, apparently to alleviate pollution stress. Overall, these findings expand our knowledge of complex phage-bacterium interactions in pollution-stressed worm guts, and deepen our understanding of the ecological and evolutionary roles of phages.


Subject(s)
Bacteriophages , Oligochaeta , Animals , Benzo(a)pyrene/toxicity , Virome , Bacteriophages/genetics , Prophages/genetics
20.
Microbiol Spectr ; : e0447822, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36946731

ABSTRACT

Antibiotic resistance is propagating worldwide, but the predominant dissemination mechanisms are not fully understood. Here, we report that antibiotic resistance gene (ARG) abundance in conjugative plasmids that are recorded in the National Center for Biotechnology Information (NCBI) RefSeq plasmid database is increasing globally, which is likely a key factor in the propagation of resistance. ARG abundance in plasmids increased by 10-fold on a global scale from the year 2000 to the year 2020 (from 0.25 to 2.93 ARG copies/plasmid), with a more pronounced increase being observed in low-to-middle income countries. This increasing trend of plasmid-borne ARGs was corroborated by bootstrap resampling from each year of the NCBI RefSeq plasmid database. The results of a correlation analysis imply that if antibiotic consumption keeps growing at the current rates, a 2.7-fold global increase in the ARG abundance of clinically relevant plasmids may be reached by 2030. High sequence similarities of clinically relevant, conjugative plasmids that are isolated both from clinics and from the environment raise concerns about the environmental resistome serving as a potential ARG maintenance reservoir that facilitates transmission across these ecological boundaries. IMPORTANCE Antibiotic resistance propagation is a significant concern due to its projected impacts on both global health and the economy. However, global propagation mechanisms are not fully understood, including regional and temporal trends in the abundance of resistance plasmids that facilitate antibiotic resistance gene (ARG) dissemination. This unprecedented study reports that ARG abundance in the conjugative plasmids that are recorded in the National Center for Biotechnology Information (NCBI) database and harbor ARGs is increasing globally with antibiotic consumption, especially in low-to-medium income countries. Through network and comparative genomic analyses, we also found high sequence similarities of clinically relevant conjugative resistance plasmids that were isolated from clinical and environmental sources, suggesting transmission between these ecological boundaries. Therefore, this study informs the One Health perspective to develop effective strategies by which to curtail the propagation of plasmid-borne antibiotic resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...