Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 101: 103984, 2020 08.
Article in English | MEDLINE | ID: mdl-32554278

ABSTRACT

The oral squamous cell carcinoma (OSCC) stands out as a public health problem due to its high incidence and low survival rate, despite advances in diagnosis and treatment. Moreover, the most commonly chemotherapeutic agents for OSCC, such as carboplatin and cisplatin, generate important side effects, evidencing the urgency in developing new drugs. Naphthoquinones are an important class of natural products or synthetic compounds with cytotoxic effect demonstrated on different cancer types. In the present study, thirty-five 1,4-naphthoquinones tethered to 1,2,3-1H-triazoles were synthesized and the antitumor activity and molecular mechanisms were evaluated in several assays including in vitro and in vivo models of OSCC and normal oral human cells. Compounds 16a, 16b and 16 g were able to induce cytotoxicity in three different tumor cell lines of human OSCC (SCC4, SCC9 and SCC25) and were more toxic and selective to tumor cells (Selective Index, SI > 2) than classical and chemically similar controls (Carboplatin and Lapachol). Compound 16 g showed the higher SI value. Besides, compounds 16a, 16b and 16 g significantly reduced colony formation of SCC9 cells in the tested concentrations. Hemolytic assay using compounds 16a, 16b and 16 g at high concentrations showed no compound exhibited hemolysis higher than 5%, similar to controls. In vivo acute toxicity study showed that 16 g was the only one, among the three compounds, with no apparent limiting toxic effects on mice in the tested concentrations. Thus, the investigation of cell death mechanisms was conducted with this compound. 16 g does not trigger ROS production nor binds to DNA. On the other hand, compound 16 g induced microtubule disorganization, and molecular modeling studies suggests a potential mechanism of action related to inhibition of topoisomerases and/or hPKM2 activities. Cell morphology, pyknotic nuclei presence, cleaved caspase-3 staining and viability assays using caspase-3 inhibitors demonstrate compound 16 g induced cell death through apoptosis. Among the 35 synthesized triazole naphthoquinones, compound 16 g was the most effective compound against OSCC cells, presenting high cytotoxicity (~35 µM), selectivity (SI ~ 6) and low acute toxicity on animals, and therefore might be considered for future cancer therapy.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Mouth Neoplasms/drug therapy , Naphthoquinones/therapeutic use , Triazoles/therapeutic use , Animals , Humans , Mice , Molecular Structure , Naphthoquinones/chemistry , Triazoles/chemistry
2.
Eur J Med Chem ; 156: 524-533, 2018 Aug 05.
Article in English | MEDLINE | ID: mdl-30025347

ABSTRACT

Naphthoquinones and 1,2,3-triazoles are structural pharmacophore that is known to impart several cancer cells. This work shows a synthetic methodology to obtain hybrid molecules involving naphthoquinone and triazol scaffold as multiple ligands. A simple and efficient synthetic route was used to prepare a series of sixteen compounds being eight 2-(1-aryl-1H-1,2,3-triazol-4-yl)-2,3-dihydronaphtho[1,2 b]furan-4,5-diones and eight 2-(1-aryl-1H-1,2,3-triazol-4-yl)-2,3-dihydronaphtho[2,3-b]furan-4,9-diones. These compounds were tested in MDA-MB231, Caco-2 and Calu-3 human cancer cells, and among them 7a was the most selective compound on Caco-2 cells, the most sensitized cell line in this study. In silico study suggest that the blockage of topoisomerase I and IIα may be one of the mechanisms of action responsible for the cytotoxic effect of 7a in Caco-2 cells.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Triazoles/chemistry , Triazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Caco-2 Cells , Cell Line, Tumor , DNA Topoisomerases, Type I/metabolism , Humans , Models, Molecular , Naphthoquinones/chemical synthesis , Neoplasms/drug therapy , Neoplasms/metabolism , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Triazoles/chemical synthesis
3.
Evid Based Complement Alternat Med ; 2(1): 39-47, 2005 03.
Article in English | MEDLINE | ID: mdl-15841277

ABSTRACT

Lately several naturally occurring peptides presenting antimicrobial activity have been described in the literature. However, snake venoms, which are an enormous source of peptides, have not been fully explored for searching such molecules. The aim of this work is to review the basis of antimicrobial mechanisms revealing snake venom as a feasible source for searching an antibiotic prototype. Therefore, it includes (i) a description of the constituents of the snake venoms involved in their main biological effects during the envenomation process; (ii) examples of snake venom molecules of commercial use; (iii) mechanisms of action of known antibiotics; and (iv) how the microorganisms can be resistant to antibiotics. This review also shows that snake venoms are not totally unexplored sources for antibiotics and complementary and alternative medicine (CAM).

SELECTION OF CITATIONS
SEARCH DETAIL
...