Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 616-617: 622-631, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29103645

ABSTRACT

Volatile sulfur compounds (VSCs) are important contributors to nuisance odours from the processing of wastewater sludge and biosolids. However, emission characteristics are difficult to predict as they vary between sites and are likely to be affected by biosolids processing configuration and operation. VSC emissions from biosolids throughout 6 wastewater treatment plants (WWTPs) in Sydney, Australia were examined in this study. H2S was the VSC found at the highest concentrations throughout the WWTPs, with concentrations ranging from 7 to 39,000µg/m3. Based on odour activity values (OAVs), H2S was typically also the most dominant odorant. However, methyl mercaptan (MeSH) was also found to be sensorially important in the biosolids storage areas given its low odour detection threshold (ODT). High concentrations of VOSCs such as MeSH in the storage areas were shown to potentially interfere with H2S measurements using the Jerome 631-X H2S sensor and these interferences should be investigated in more detail. The VSC composition of emissions varied throughout biosolids processing as well as between the different WWTPs. The primary sludge and biosolids after dewatering and during storage, were key stages producing nuisance odours as judged by the determination of OAVs. Cluster analysis was used to group sampling locations according to VSC emissions. These groups were typically the dewatered and stored biosolids, primary and thickened primary sludge, and waste activated sludge (WAS), thickened WAS, digested sludge and centrate. Effects of biosolids composition and process operation on VSC emissions were evaluated using best subset regression. Emissions from the primary sludge were dominated by H2S and appeared to be affected by the presence of organic matter, pH and Fe content. While volatile organic sulfur compounds (VOSCs) emitted from the produced biosolids were shown to be correlated with upstream factors such as Fe and Al salt dosing, anaerobic digestion and dewatering parameters.

2.
Sci Total Environ ; 599-600: 663-670, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28494291

ABSTRACT

A diverse range of volatile organic compounds (VOCs) are emitted from wastewater biosolids processing. Odorous emissions are predominately made up of volatile sulfur compounds (VSCs) which are typically the only odorants measured. However, a range of VOCs are known to contribute to malodours yet previous studies often overlook the contribution of VOCs in comparison with VSCs. This study aims to evaluate how emissions are affected by different biosolids processing configurations, and if any non-sulfur VOCs should be included in odour measurement and management. Non-sulfur VOCs emitted from biosolids throughout six wastewater treatment plants in the Sydney, Australia region were measured at six locations on average twice each week over 2-3weeks at each site. Variations in types of VOCs emitted throughout and between the sites were assigned to differences in WWTP processing configurations, plant operation and variations in industrial and municipal flows to the sewer network, referred to as sewer catchments. The presence of VOCs is likely due to biotic generation as well as industrial or residential additions to the sewer network. The dewatered and stored biosolids samples had the highest levels of VOC emissions. Sensorially important odorants were p-cresol and butanoic acid, based on the frequency of detection and odour activity values. Other compounds with a high risk of nuisance impacts were trimethylamine, indole and phenol emitted from the dewatered and stored biosolids, and volatile fatty acids from the anaerobic digester inlet and outlet at one particular site. The findings show that non-sulfur VOCs should be added to odorant monitoring campaigns at WWTPs. Identification of VOCs as sensorially important odorants opens opportunities for the more efficient management of nuisance odours, through targeted odour control or process improvement.

3.
J Environ Manage ; 198(Pt 1): 153-162, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28458109

ABSTRACT

High flows of sulfur through wastewater treatment plants (WWTPs) may cause noxious gaseous emissions, corrosion of infrastructure, inhibit wastewater microbial communities, or contribute to acid rain if the biosolids or biogas is combusted. Yet, sulfur is an important agricultural nutrient and the direct application of biosolids to soils enables its beneficial re-use. Flows of sulfur throughout the biosolids processing of six WWTPs were investigated to identify how they were affected by biosolids processing configurations. The process of tracking sulfur flows through the sites also identified limitations in data availability and quality, highlighting future requirements for tracking substance flows. One site was investigated in more detail showing sulfur speciation throughout the plant and tracking sulfur flows in odour control systems in order to quantify outflows to air, land and ocean sinks. While the majority of sulfur from WWTPs is removed as sulfate in the secondary effluent, the sulfur content of biosolids is valuable as it can be directly returned to soils to combat the potential sulfur deficiencies. Biosolids processing configurations, which focus on maximising solids recovery, through high efficiency separation techniques in primary sedimentation tanks, thickeners and dewatering centrifuges retain more sulfur in the biosolids. However, variations in sulfur loads and concentrations entering the WWTPs affect sulfur recovery in the biosolids, suggesting industrial emitters, and chemical dosing of iron salts are responsible for differences in recovery between sites.


Subject(s)
Sulfur , Waste Disposal, Fluid , Wastewater , Agriculture , Sewage , Soil
4.
Water Sci Technol ; 75(7-8): 1617-1624, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28402302

ABSTRACT

Opportunities for the beneficial re-use of biosolids are limited by nuisance odour emissions. Volatile organic compounds (VOCs) from anaerobically stabilised biosolids were measured to identify compounds that could contribute to the overall odour character of nuisance emissions. Flux hood sampling and chemical analysis were used to identify VOCs emitted from biosolids as they were stored in ambient conditions. Compounds emitted varied as the biosolid cakes were stored for a period of 50 days. VOCs detected in the biosolids are likely to occur from catchment sources as well as abiotic and biotic generation in the wastewater processing and the biosolids as they are stored. Odour activity values (OAVs) were used to compare odorants. Trimethylamine was the only VOC detected that exceeded the sulfur compounds in terms of OAVs. Other compounds such as limonene, ethyl methyl benzene and acetic acid were detected at concentrations exceeding their olfactory detection limits, however at lower OAVs than sulfur compounds.


Subject(s)
Bacteria/metabolism , Odorants/analysis , Volatile Organic Compounds/analysis , Air Pollutants/analysis , Air Pollutants/metabolism , Anaerobiosis , Biodegradation, Environmental , Sulfur Compounds/analysis , Sulfur Compounds/metabolism , Volatile Organic Compounds/metabolism
5.
Water Res ; 96: 299-307, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27061153

ABSTRACT

Effective handling and treatment of the solids fraction from advanced wastewater treatment operations carries a substantial burden for water utilities relative to the total economic and environmental impacts from modern day wastewater treatment. While good process-level data for a range of wastewater treatment operations are becoming more readily available, there remains a dearth of high quality operational data for solids line processes in particular. This study seeks to address this data gap by presenting a suite of high quality, process-level life cycle inventory data covering a range of solids line wastewater treatment processes, extending from primary treatment through to biosolids reuse in agriculture. Within the study, the impacts of secondary treatment technology and key parameters such as sludge retention time, activated sludge age and primary-to-waste activated sludge ratio (PS:WAS) on the life cycle inventory data of solids processing trains for five model wastewater treatment plant configurations are presented. BioWin(®) models are calibrated with real operational plant data and estimated electricity consumption values were reconciled against overall plant energy consumption. The concept of "representative crop" is also introduced in order to reduce the uncertainty associated with nitrous oxide emissions and soil carbon sequestration offsets under biosolids land application scenarios. Results indicate that both the treatment plant biogas electricity offset and the soil carbon sequestration offset from land-applied biosolids, represent the main greenhouse gas mitigation opportunities. In contrast, fertiliser offsets are of relatively minor importance in terms of the overall life cycle emissions impacts. Results also show that fugitive methane emissions at the plant, as well as nitrous oxide emissions both at the plant and following agricultural application of biosolids, are significant contributors to the overall greenhouse gas balance and combined are higher than emissions associated with transportation. Sensitivity analyses for key parameters including digester PS:WAS and sludge retention time, and assumed biosolids nitrogen content and agricultural availability also provide additional robustness and comprehensiveness to our inventory data and will facilitate more customised user analyses.


Subject(s)
Sewage , Waste Disposal, Fluid , Fertilizers , Greenhouse Effect , Methane , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...