Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(6): e16974, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37346362

ABSTRACT

There is a growing demand for nutritional, functional, and eco-friendly dairy products, which has increased the need for research regarding alternative and sustainable protein sources. Plant-based, single-cell (SCP), and recombinant proteins are being explored as alternatives to dairy proteins. Plant-Based Proteins (PBPs) are commonly used to replace total dairy protein. However, PBPs are generally mixed with dairy proteins to improve their functional properties, which makes them dependent on animal protein sources. In contrast, single-Cell Proteins (SCPs) and recombinant dairy proteins are promising alternatives for dairy protein replacement since they provide nutritional components, essential amino acids, and high protein yield and can use industrial and agricultural waste as carbon sources. Although alternative protein sources offer numerous advantages over conventional dairy proteins, several technical and sensory challenges must be addressed to fully incorporate them into cheese and yogurt products. Future research can focus on improving the functional and sensory properties of alternative protein sources and developing new processing technologies to optimize their use in dairy products. This review highlights the current status of alternative dairy proteins in cheese and yogurt, their functional properties, and the challenges of their use in these products.

2.
Polymers (Basel) ; 13(4)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671501

ABSTRACT

This work applies a multi-scale approach to the microencapsulation by interfacial polymerization. Such microencapsulation is used to produce fertilizers, pesticides and drugs. In this study, variations at three different scales (molecular, microscopic and macroscopic) of product design (i.e., product variables, process variables and properties) are considered simultaneously. We quantify the effect of the formulation, composition and pH change on the microcapsules' properties. Additionally, the method of measuring the strength of the microcapsules by crushing a sample of microcapsules' suspension was tested. Results show that the xylene release rate in the microcapsules decreases when the amine functionality is greater due to a stronger crosslinking. Such degree of crosslinking increases the compression force over the microcapsules and improves their appearance. When high levels of amine concentration are used, the initial pH values in the reaction are also high which leads to agglomeration. This study provides a possible explanation to the aggregation based on the kinetic and thermodynamic controls in reactions and shows that the pH measurements account for the polyurea reaction and carbamate formation, which is a reason why this is not a suitable method to study kinetics of polymerization. Finally, the method used to measure the compressive strength of the microcapsules detected differences in formulations and composition with low sensibility.

3.
Langmuir ; 37(5): 1799-1810, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33497231

ABSTRACT

Asphaltenes play a crucial role in crude oil behavior, and model compounds are often used to capture, mimic, and predict certain interfacial properties. In previous works, sorption of an asphaltene model compound (C5PeC11) was studied using surface pressure isotherms, where a deviation from the expected thermodynamic behavior of the interface during decane-water and air-water compression experiments was observed but not explained. In this work, the interfacial behavior of C5PeC11 was assessed at the decane-water and the air-water interfaces using a multiscale approach that includes: compression-expansion experiments on rectangular and radial Langmuir troughs, dynamic interfacial stress relaxation, and fluorescence microscopy imaging. Connections between molecular and microscopic phenomena strongly suggest that the nonthermodynamic response can be explained through a dynamic effect whose origin lies in the predominance of intermolecular forces in C5PeC11 molecules over the mechanical compression force applied. When aggregation begins at the air-water interface, stable structures are formed, and the nonthermodynamic phenomenon is not observed in subsequent compressions. However, at the decane-water interface, the initial aggregation is not consolidated due to the effect of the oil phase on the free energy of the interface allowing the high reproducibility of the dynamic effect in subsequent compression cycles. These results highlight the need to probe interfacial systems at various length scales to adequately separate equilibrium thermodynamics from dynamic responses.

4.
Langmuir ; 36(27): 7965-7979, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32580555

ABSTRACT

Asphaltenes are largely responsible for crude oil interfacial behavior. Due to their complex molecular nature, studying connections between interfacial properties and molecular structure is challenging, and these connections remain unclear. Several groups have reported on the interfacial behavior of asphaltenes, but a unified picture of both interfacial dynamics and thermodynamics is still missing. We seek to establish connections between asphaltene interfacial morphology and interfacial dynamics by combining interfacial dilatational deformation with microscopic structural imaging analysis. Understanding the behavior of natural asphaltene samples is made difficult by the inherent molecular variability. Therefore, we have also studied the behavior of an asphaltene model compound to draw fundamental structure-property relationships. This work contains simultaneous interfacial deformation and microscopy in systems of natural and model asphaltenes at air-water and decane-water interfaces. How the dynamics of natural asphaltenes influences the morphological and thermodynamic state of the air-water and decane-water interfaces is discussed based on the deviations observed between isotropic and anisotropic deformations. Areas where model asphaltenes can help us to understand the behavior of natural asphaltenes are identified such as its high surface pressure activity and aggregation character. An aggregation mechanism for model and natural asphaltenes is proposed based on an observed relationship between microscopic and millimetric aggregates.

5.
Biomolecules ; 9(8)2019 08 01.
Article in English | MEDLINE | ID: mdl-31374835

ABSTRACT

Oils and fats are important raw materials in food products, animal feed, cosmetics, and pharmaceuticals among others. The market today is dominated by oils derive, d from African palm, soybean, oilseed and animal fats. Colombia's Amazon region has endemic palms such as Euterpe precatoria (açai), Oenocarpus bataua (patawa), and Mauritia flexuosa (buriti) which grow in abundance and produce a large amount of ethereal extract. However, as these oils have never been used for any economic purpose, little is known about their chemical composition or their potential as natural ingredients for the cosmetics or food industries. In order to fill this gap, we decided to characterize the lipids present in the fruits of these palms. We began by extracting the oils using mechanical and solvent-based approaches. The oils were evaluated by quantifying the quality indices and their lipidomic profiles. The main components of these profiles were triglycerides, followed by diglycerides, fatty acids, acylcarnitine, ceramides, ergosterol, lysophosphatidylcholine, phosphatidyl ethanolamine, and sphingolipids. The results suggest that solvent extraction helped increase the diglyceride concentration in the three analyzed fruits. Unsaturated lipids were predominant in all three fruits and triolein was the most abundant compound. Characterization of the oils provides important insights into the way they might behave as potential ingredients of a range of products. The sustainable use of these oils may have considerable economic potential.


Subject(s)
Chemical Fractionation/methods , Fruit/metabolism , Lipidomics , Plant Oils/isolation & purification , Plant Oils/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...