Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(9)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37763268

ABSTRACT

In this work, the extraction of phenolic compounds from orange waste (OW) obtained after the industrial extraction of neohesperidin from bitter oranges (Seville oranges) was assayed by microwave-assisted extraction (MAE) and Soxhlet extraction (SE). The extraction agents were ethanol and acetone. For SE, aqueous solutions of both extraction agents were used at 50%, 75%, and 100% (v/v). For MAE, a design of experiments was applied to determine the conditions that maximize the extraction yield. The independent variables were temperature (from 20 to 75 °C), process time (between 10 and 20 min), and percentage of extraction agent (v/v) in the extraction solution (50%, 75%, and 100%). Following that, the extracts were analyzed by ultra-high-performance liquid chromatography to identify the main phenolic compounds extracted. Results showed that 50% (v/v) ethanol or acetone was the extraction agent concentration that maximized the extraction yield for both SE and MAE, with the yields of MAE being higher than those of SE. Thus, the highest extraction yields on a dry basis achieved for MAE were 16.7 g/100 OW for 50% acetone, 75 °C, and 15 min, and 20.2 g/100 OW for 50% ethanol, 75 °C, and 10.8 min, respectively. Finally, the main phenolic compounds found in the orange waste were naringin, hesperidin, neohesperidin, and naringenin (i.e., flavonoids).

2.
Plants (Basel) ; 11(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35009074

ABSTRACT

Olive stones are a by-product of the olive oil industry. In this work, the valorisation of olive stones through pyrolysis was attempted. Before pyrolysis, half of the samples were impregnated with sulphuric acid. Pyrolysis was carried out in a vertical tubular furnace with a ceramic support. The pyrolysis conditions assayed were: temperature between 400 and 600 °C, heating ramp between 5 and 20 °C∙min-1, and inert gas flow rate between 50 and 300 mL Ar∙min-1. Among them, temperature was the only parameter that influenced the pyrolysis product distribution. The most suitable temperature for obtaining biochar was 400 °C for both non-treated and pre-treated raw material, while for obtaining bio-oil, it was 600 °C for impregnated olive stones and 400 °C for the raw material. The impregnated olives stones led to bio-oils with much higher amounts of high-added-value products such as levoglucosenone and catechol. Finally, the biochars were impregnated with sulphuric acid and assayed as biocatalysts for the esterification of oleic acid with methanol in a stirred tank batch reactor at 60 °C for 30 min. Biochars from non-treated olive stones, which had lower specific surfaces, led to higher esterification yields (up to 96.2%).

3.
Food Chem ; 323: 126861, 2020 Apr 18.
Article in English | MEDLINE | ID: mdl-32334320

ABSTRACT

Pectin has several purposes in the food and pharmaceutical industry making its quantification important for further extraction. Current techniques for pectin quantification require its extraction using chemicals and producing residues. Determination of pectin content in orange peels was investigated using near infrared hyperspectral imaging (NIR-HSI). Hyperspectral images from orange peel (140 samples) with different amounts of pectin were acquired in the range of 900-2500 nm, and the spectra was used for calibration models using multivariate statistical analyses. Principal component analysis (PCA) and linear discriminant analysis (LDA) showed better results considering three groups: low (0-5%), intermediate (10-40%) and high (50-100%) pectin content. Partial least squares regression (PLSR) models based on full spectra showed higher precision (R2 > 0.93) than those based on few selected wavelengths (R2 between 0.92 and 0.94). The results demonstrate the potential of NIR-HSI to quantify pectin content in orange peels, providing a valuable technique for orange producers and processing industries.

4.
J Environ Manage ; 231: 886-895, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30419444

ABSTRACT

This paper deals with the removal of heavy metals from marginal soil mixtures from the Cobre Las Cruces and Aznalcóllar mining areas containing high concentrations of metals (Cr, Fe, Ni, Cu, Zn, Cd, Hg, Pb and As) by means of phytoremediation using Jatropha curcas L., and the subsequent production of biocatalysts from the plant biomass. First, J. curcas L. was sowed in eight mixtures of these mining soils to study its adaption to these high-contaminated soils and its growth during 60 days in a greenhouse under conditions simulating the South of Spain's spring climate. Later, the most suitable soil mixtures for plant growth were used for 120-day phytoremediation under the same conditions. Heavy metal concentration in soils, roots, stems and leaves were measured by ICP-OES at the beginning, at the middle and at the end of the phytoremediation period, thus calculating the translocation and bioaccumulation factors. J. curcas L. was found to absorb great amounts of Fe (>3000 mg kg-1 plant) as well as notable amounts of Pb, Zn, Cu, Cr and Ni, and traces of As. Other metals with lower initial concentrations such as Cd, Hg and Sn were completely removed from soils. Finally, the plant biomass was subjected to pyrolysis to obtain catalytic biocarbons, assessing the optimal temperature for the pyrolytic process by means of thermogravimetric analysis and Raman spectroscopy.


Subject(s)
Jatropha , Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Biomass , Carbon , Soil , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...