Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ramanujan J ; 49(2): 421-449, 2019.
Article in English | MEDLINE | ID: mdl-31258382

ABSTRACT

We study Fourier-Bessel series on a q-linear grid, defined as expansions in complete q-orthogonal systems constructed with the third Jackson q-Bessel function, and obtain sufficient conditions for uniform convergence. The convergence results are illustrated with specific examples of expansions in q-Fourier-Bessel series.

2.
Article in English | MEDLINE | ID: mdl-25871173

ABSTRACT

We investigate the dynamics of a kink in a damped parametrically driven nonlinear Klein-Gordon equation. We show by using a method of averaging that, in the high-frequency limit, the kink moves in an effective potential and is driven by an effective constant force. We demonstrate that the shape of the solitary wave can be controlled via the frequency and the eccentricity of the modulation. This is in accordance with the experimental results reported in a recent paper [Casic et al., Phys. Rev. Lett. 110, 168302 (2013)], where the dynamic self-assembly and propulsion of a ribbon formed from paramagnetic colloids in a time-dependent magnetic field has been studied.

3.
Article in English | MEDLINE | ID: mdl-25375576

ABSTRACT

A method of averaging is applied to study the dynamics of a kink in the damped double sine-Gordon equation driven by both external (nonparametric) and parametric periodic forces at high frequencies. This theoretical approach leads to the study of a double sine-Gordon equation with an effective potential and an effective additive force. Direct numerical simulations show how the appearance of two connected π kinks and of an individual π kink can be controlled via the frequency. An anomalous negative mobility phenomenon is also predicted by theory and confirmed by simulations of the original equation.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(1 Pt 2): 016605, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19658830

ABSTRACT

This work studies the damped double sine-Gordon equation driven by a biharmonic force, where a parameter lambda controls the existence and the frequency of an internal mode. The role of internal oscillations of the kink width in ratchet dynamics of kink is investigated within the framework of collective coordinate theories. It is found that the ratchet velocity of the kink, when an internal mode appears in this system, decreases contrary to what was expected. It is also shown that the kink exhibits a higher mobility in the double sine-Gordon without internal mode, but with a quasilocalized first phonon mode.

SELECTION OF CITATIONS
SEARCH DETAIL
...