Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Res (Stuttg) ; 74(2): 47-52, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38232750

ABSTRACT

Heart failure is a health problem worldwide. There are some drugs for it, including digoxin, spironolactone, captopril, and valsartan, but some of these drugs can produce secondary effects, such as arrhythmia, cough, hyperkalemia, hyponatremia and hypotension. The aim of this research was to evaluate the biological activity of coumarin (2H-chromen-2-one) and its derivatives (3BrAcet-C, 3-4Br-Ph-C, 4-CN-7D-C, 4-Me-7-Ph-C and 6Br-3-D-C) against ischemia/reperfusion injury as a therapeutic alternative for heart failure. In addition, the biological activity of the coumarin derivative 4-Me-7-Ph-C on left ventricular pressure (LVP) was determined in the absence or presence of ouabain and nifedipine at a dose of 1 nM using an isolated rat heart model. The results showed that i) the coumarin derivative 4-Me-7-Ph-C significantly decreased the infarct area (p+=+0.05) compared with 3BrAcet-C, 3-4Br-Ph-C, 4-CN-7D-C, and 6Br-3-D-C; and ii) 4-Me-7-Ph-C increased LVP in a dose-dependent manner, which effect was inhibited by nifedipine. These data suggest that coumarin 4-Me-7-Ph-C may act as a type-L calcium channel activator, so it could be a good agent to treat heart failure.


Subject(s)
Heart Failure , Myocardial Reperfusion Injury , Rats , Animals , Nifedipine/pharmacology , Nifedipine/therapeutic use , Myocardial Reperfusion Injury/drug therapy , Heart Failure/drug therapy , Coumarins/pharmacology , Coumarins/therapeutic use , Ischemia , Heart
2.
Drug Res (Stuttg) ; 73(6): 355-364, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37172939

ABSTRACT

BACKGROUND: Some studies indicate that the angiogenesis process is related to vascular endothelial growth factor, which can interact with endothelial cell surface receptors (VEGF-R1, VEGF-R2, and VEGF-R3); this biochemical process and other factors result in the promotion and growth of new blood vessels under normal conditions. However, some studies indicate that this phenomenon could also occur in cancer cells. It is important to mention that some amino derivatives have been prepared as VEGF-R1 inhibitors; however, their interaction with VEGF-R1 is not clear, perhaps due to different experimental approaches or differences in their chemical structure. OBJECTIVE: The aim of this study was to evaluate the theoretical interaction of several amino-nitrile derivatives (Compounds 1 to 38) with VEGF-R1. METHODS: The theoretical interaction of amino-nitrile derivatives with VEGF-R1 was carried out using the 3hng protein as the theoretical model. In addition, cabozantinib, pazopanib, regorafenib, and sorafenib were used as controls in the DockingServer program. RESULTS: The results showed different amino acid residues involved in the interaction of amino-nitrile derivatives with the 3hng protein surface compared with the controls. In addition, the inhibition constant (Ki) was lower for Compounds 10 and 34 than for cabozantinib. Other results show that Ki for Compounds 9, 10, 14, 27-29 and 34-36 was lower in comparison with pazopanib, regorafenib, and sorafenib. CONCLUSIONS: All theoretical data suggest that amino-nitrile derivatives could produce changes in the growth of some cancer cell lines through VEGFR-1 inhibition. Therefore, these amino-nitrile derivatives could be a therapeutic alternative to treat some types of cancer.


Subject(s)
Neoplasms , Vascular Endothelial Growth Factor Receptor-1 , Humans , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Sorafenib , Neoplasms/drug therapy , Models, Theoretical
3.
Drug Res (Stuttg) ; 73(5): 263-270, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36858071

ABSTRACT

BACKGROUND: Some studies show that some Dibenzo derivatives can produce changes in the cardiovascular system; however, its molecular mechanism is not very clear. OBJECTIVE: The objective of this investigation was to evaluate the inotropic activity of ten Dibenzo derivatives (compounds 1 to 10) on either perfusion pressure or left ventricular pressure. METHODS: Biological activity produced by the Dibenzo derivatives on either perfusion pressure or coronary resistance was evaluated using an isolated rat heart. In addition, the molecular mechanism of biological activity produced by compound 4 (Dibenzo[b,e]thiophene-11(6H)-one) on left ventricular pressure was determined using both Bay-k8644 and nifedipine as pharmacological tools in an isolated rat heart model. RESULTS: The results showed that Dibenzo[b,e]thiophene-11(6H)-one increases perfusion pressure and coronary resistance at a dose of 0.001 nM. Besides, other data display that Dibenzo[b,e]thiophene-11(6H)-one increases left ventricular pressure in a dose-dependent manner (0.001 to 100 nM) and this effect was similar to biological activity produced by Bay-k8644 drug on left ventricular pressure. However, the effect exerted by Dibenzo[b,e]thiophene-11(6H)-one was inhibited in the presence of nifedipine at a dose of 1 nM. CONCLUSIONS: All these data suggest that Dibenzo[b,e]thiophene-11(6H)-one increase left ventricular pressure through calcium channel activation. In this way, Dibenzo[b,e]thiophene-11(6H)-one could be a good candidate as positive inotropic agent to heart failure.


Subject(s)
Heart , Nifedipine , Rats , Animals , Nifedipine/pharmacology , Ventricular Pressure , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...