Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(42): 47634-47646, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33026220

ABSTRACT

Calcium cobaltite (Ca3Co4O9) is a promising p-type thermoelectric oxide material. Here, we present an approach to optimize the thermoelectric performance of Ca3Co4O9 by controlling the chemical composition and fabrication process. Ca3-xBixCo3.92O9+δ (0.1 ≤ x ≤ 0.3) and Ca2.7Bi0.3CoyO9+δ (3.92 ≤ y ≤ 4.0) ceramics were prepared by Spark Plasma Sintering (SPS). Stoichiometric mixtures of raw materials were combined and calcined at 1203 K for 12 h, followed by SPS at 1023 K for 5 min at 50 MPa. The samples were subsequently annealed at 1023 or 1203 K for 12 h in air. XRD and HRTEM analyses confirmed the formation of the cobaltite misfit phase with minor amounts of secondary phases; SEM-EDS showed the presence of Bi-rich and Co-rich secondary phases. After annealing at 1203 K, the secondary phases were significantly reduced. By controlling the cobalt deficiency and level of bismuth substitution, the electrical conductivity was enhanced without degrading Seebeck coefficients, promoting a high power factor of 0.34 mW m-1 K-2 at 823 K (parallel to the ab planes, //ab). Due to enhanced phonon scattering, the thermal conductivity was reduced by 20%. As a result, a highly competitive ZT(//ab) of 0.16 was achieved for Ca2.7Bi0.3Co3.92O9+δ ceramics at 823 K.

2.
ACS Appl Mater Interfaces ; 11(36): 32833-32843, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31419381

ABSTRACT

Nanostructuring is recognized as an efficient route for enhancing thermoelectric response. Here, we report a new synthesis strategy for nanostructuring oxide ceramics and demonstrate its effectiveness on an important n-type thermoelectric SrTiO3. Ceramics of Sr0.9La0.1TiO3 with additions of B2O3 were synthesized by the mixed oxide route. Samples were sintered in air followed by annealing in a reducing atmosphere. Crystallographic data from X-ray and electron diffraction showed Pm3̅m cubic symmetry for all the samples. High-resolution transmission electron microscopy (HRTEM) showed the formation of a core-shell type structure within the grains for the annealed ceramics. The cores contain nanosize features comprising pairs of nanosize voids and particles; the feature sizes depend on annealing time. Atomic-resolution, high-angle annular-dark-field imaging and electron energy loss spectroscopy in the scanning transmission electron microscopy (STEM-HAADF-EELS) showed the particles to be rich in Ti and the areas around the voids to contain high concentrations of Ti3+. Additionally, dislocations were observed, with significantly higher densities in the shell areas. The observed dislocations are combined (100) and (110) edge dislocations. The major impact of the core-shell type microstructures, with nanosize inclusions, is the reduction of the thermal conductivity. Sr0.9La0.1TiO3 ceramics containing grain boundary shells of size ≈ 1 µm and inclusions in the core of 60-80 nm exhibit a peak power factor of 1600 µW/m·K2 at 540 K; at 1000 K, they exhibit a low thermal conductivity (2.75 W/m·K) and a power factor of 1050 µW/m·K2 leading to a high of ZT of 0.39 ± 0.03. This is the highest ZT reported so far for Sr0.9La0.1TiO3 based-compositions. This nanostructuring strategy should be readily applicable to other functional oxides.

SELECTION OF CITATIONS
SEARCH DETAIL
...