Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Type of study
Publication year range
1.
Pharmaceutics ; 16(3)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38543221

ABSTRACT

Bacterial infections are major problems in wound care due to their impact on the retarded process of wound healing, leading to chronic wounds. Most of the presently utilized wound dressing products exhibit poor antimicrobial properties. Wound dressings formulated from chitosan have been reported to be effective for treating infected wounds, resulting from the antibacterial properties of chitosan. The antibacterial properties of chitosan-based wound dressings can be further enhanced by incorporating metallic nanoparticles into them, such as silver, zinc, titanium, etc. The incorporation of silver nanoparticles into chitosan-based wound dressings has been widely explored in the design of antimicrobial wound dressings. The incorporation of silver nanoparticles into chitosan-based wound dressings promotes accelerated wound-healing processes due to enhanced antimicrobial activity. The accelerated wound healing by these metal-based nanoparticles is via the regulation of re-epithelialization and inflammation without affecting the viability of normal cells. However, there have been few reports that evaluate these wound dressings in infectious animal models to prove their efficacy. The in vivo toxicity of silver nanoparticles still needs to be addressed, revealing the need for further preclinical and clinical trials. The fabrication of wound dressings incorporated with silver nanoparticles has not been fully explored, especially for wounds requiring immediate treatment. The possible interactions between silver nanoparticles and chitosan scaffolds that result in synergistic effects still need to be understood and studied. This review provides a comprehensive report on the preclinical outcomes of chitosan wound dressing materials loaded with silver nanoparticles for managing infected wounds.

2.
Curr Drug Deliv ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37842887

ABSTRACT

Wound healing and skin regeneration are major challenges in chronic wounds. Among the types of wound dressing products currently available in the market, each wound dressing material is designed for a specific wound type. Some of these products suffer from various shortcomings, such as poor antibacterial efficacy and mechanical performance, inability to provide a moist environment, poor permeability to oxygen and capability to induce cell migration and proliferation during the wound healing process. Hydrogels and nanofibers are widely reported wound dressings that have demonstrated promising capability to overcome these shortcomings. Cellulose acetate is a semisynthetic polymer that has attracted great attention in the fabrication of hydrogels and nanofibers. Loading bioactive agents such as antibiotics, essential oils, metallic nanoparticles, plant extracts, and honey into cellulose acetate-based nanofibers and hydrogels enhanced their biological effects, including antibacterial, antioxidant, and wound healing. This review reports cellulose acetate-based hydrogels and nanofibers loaded with bioactive agents for wound dressing and skin regeneration.

3.
Ther Deliv ; 14(2): 139-156, 2023 02.
Article in English | MEDLINE | ID: mdl-37125434

ABSTRACT

Aim: Essential oils are promising antibacterial and wound-healing agents that should be explored for the design of wound dressings. Materials & methods: Topical gels prepared from a combination of carboxymethyl cellulose and poloxamer were incorporated with tea tree and lavender oil together with Ag nanoparticles. In vitro release, cytotoxicity, antibacterial, and wound healing studies were performed. Results: The gels displayed good spreadability with viscosity in the range of 210-1200 cP. The gels displayed promising antibacterial activity against selected Gram-positive and Gram-negative bacteria used in the study. The % cell viability of the gels was more than 90.83%. Conclusion: The topical gels displayed excellent wound closure in vitro revealing that they are potential wound dressings for bacteria-infected wounds.


What is this article about? This article reports the efficacy of carboxymethyl cellulose-based topical gels loaded with a combination of essential oils and silver nanoparticles as potential wound dressings for bacterial-infected wounds. What were the results? The topical gels induced a faster rate of closure than the untreated cells in 96 h. The gel formulations did not induce any significant cytotoxic effect. They were effective against Gram-negative and Gram-positive bacteria used in the study. What do the results of the study mean? The topical gels displayed promising healing effects in vitro revealing that they are potential wound dressings for treating bacteria-infected wounds.


Subject(s)
Metal Nanoparticles , Oils, Volatile , Anti-Bacterial Agents/pharmacology , Carboxymethylcellulose Sodium , Poloxamer , Gram-Negative Bacteria , Gram-Positive Bacteria , Silver , Bandages , Oils, Volatile/pharmacology , Gels
4.
Polymers (Basel) ; 14(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36236046

ABSTRACT

Several factors, such as bacterial infections, underlying conditions, malnutrition, obesity, ageing, and smoking are the most common issues that cause a delayed process of wound healing. Developing wound dressings that promote an accelerated wound healing process and skin regeneration is crucial. The properties of wound dressings that make them suitable for the acceleration of the wound healing process include good antibacterial efficacy, excellent biocompatibility, and non-toxicity, the ability to provide a moist environment, stimulating cell migration and adhesion, and providing gaseous permeation. Biopolymers have demonstrated features appropriate for the development of effective wound dressing scaffolds. Gellan gum is one of the biopolymers that has attracted great attention in biomedical applications. The wound dressing materials fabricated from gellan gum possess outstanding properties when compared to traditional dressings, such as good biocompatibility, biodegradability, non-toxicity, renewability, and stable nature. This biopolymer has been broadly employed for the development of wound dressing scaffolds in different forms. This review discusses the physicochemical and biological properties of gellan gum-based scaffolds in the management of wounds.

5.
Int J Mol Sci ; 23(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36232561

ABSTRACT

Colorectal cancer is a common cancer in both men and women. Numerous studies on the therapeutic effectiveness of nanoparticles against colorectal cancer have been reported. Platinum treatments as well as other medications comprising of nanoparticles have been utilized. Drug resistance restricts the use of platinum medicines, despite their considerable efficacy against a variety of cancers. This review reports clinically licensed platinum medicines (cisplatin, carboplatin, and oxaliplatin) combined with various nanoparticles that have been evaluated for their therapeutic efficacy in the treatment of colorectal cancer, including their mechanism of action, resistance, and limitations.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Nanoparticles , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carboplatin/pharmacology , Cisplatin/pharmacology , Colorectal Neoplasms/drug therapy , Female , Humans , Male , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/therapeutic use , Oxaliplatin/therapeutic use , Platinum/therapeutic use
6.
Polymers (Basel) ; 14(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36145917

ABSTRACT

Among the factors that delay the wound healing process in chronic wounds, bacterial infections are a common cause of acute wounds becoming chronic. Various therapeutic agents, such as antibiotics, metallic nanoparticles, and essential oils have been employed to treat infected wounds and also prevent the wounds from bacterial invasion. Essential oils are promising therapeutic agents with excellent wound healing, anti-inflammatory and antimicrobial activities, and good soothing effects. Some essential oils become chemically unstable when exposed to light, heat, oxygen, and moisture. The stability and biological activity of essential oil can be preserved via loading into hydrogels. The polymer-based hydrogels loaded with bioactive agents are regarded as ideal wound dressings with unique features, such as controlled and sustained drug release mechanisms, good antibacterial activity, non-toxicity, excellent cytocompatibility, good porosity, moderate water vapour transmission rate, etc. This review addresses the pre-clinical outcomes of hydrogels loaded with essential oils in the treatment of infected wounds.

7.
Molecules ; 27(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35889350

ABSTRACT

The scarcity of novel and effective therapeutics for the treatment of cancer is a pressing and alarming issue that needs to be prioritized. The number of cancer cases and deaths are increasing at a rapid rate worldwide. Doxorubicin, an anticancer agent, is currently used to treat several types of cancer. It disrupts myriad processes such as histone eviction, ceramide overproduction, DNA-adduct formation, reactive oxygen species generation, Ca2+, and iron hemostasis regulation. However, its use is limited by factors such as drug resistance, toxicity, and congestive heart failure reported in some patients. The combination of doxorubicin with other chemotherapeutic agents has been reported as an effective treatment option for cancer with few side effects. Thus, the hybridization of doxorubicin and other chemotherapeutic drugs is regarded as a promising approach that can lead to effective anticancer agents. This review gives an update on hybrid compounds containing the scaffolds of doxorubicin and its derivatives with potent chemotherapeutic effects.


Subject(s)
Antineoplastic Agents , Doxorubicin , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , DNA Damage , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Histones , Humans
8.
Polymers (Basel) ; 14(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35215637

ABSTRACT

Diabetic wounds are severe injuries that are common in patients that suffer from diabetes. Most of the presently employed wound dressing scaffolds are inappropriate for treating diabetic wounds. Improper treatment of diabetic wounds usually results in amputations. The shortcomings that are related to the currently used wound dressings include poor antimicrobial properties, inability to provide moisture, weak mechanical features, poor biodegradability, and biocompatibility, etc. To overcome the poor mechanical properties, polymer-based wound dressings have been designed from the combination of biopolymers (natural polymers) (e.g., chitosan, alginate, cellulose, chitin, gelatin, etc.) and synthetic polymers (e.g., poly (vinyl alcohol), poly (lactic-co-glycolic acid), polylactide, poly-glycolic acid, polyurethanes, etc.) to produce effective hybrid scaffolds for wound management. The loading of bioactive agents or drugs into polymer-based wound dressings can result in improved therapeutic outcomes such as good antibacterial or antioxidant activity when used in the treatment of diabetic wounds. Based on the outstanding performance of polymer-based wound dressings on diabetic wounds in the pre-clinical experiments, the in vivo and in vitro therapeutic results of the wound dressing materials on the diabetic wound are hereby reviewed.

9.
Molecules ; 26(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34946603

ABSTRACT

Cancer and malaria are major health conditions around the world despite many strategies and therapeutics available for their treatment. The most used strategy for the treatment of these diseases is the administration of therapeutic drugs, which suffer from several shortcomings. Some of the pharmacological limitations associated with these drugs are multi-drug resistance, drug toxicity, poor biocompatibility and bioavailability, and poor water solubility. The currently ongoing preclinical studies have demonstrated that combination therapy is a potent approach that can overcome some of the aforementioned limitations. Artemisinin and its derivatives have been reported to exhibit potent efficacy as anticancer and antimalarial agents. This review reports hybrid compounds containing artemisinin scaffolds and their derivatives with promising therapeutic effects for the treatment of cancer and malaria.


Subject(s)
Antimalarials/pharmacology , Antineoplastic Agents/pharmacology , Artemisinins/pharmacology , Malaria/drug therapy , Neoplasms/drug therapy , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Artemisinins/chemical synthesis , Artemisinins/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Molecular Conformation , Neoplasms/pathology
10.
Polymers (Basel) ; 13(24)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34960918

ABSTRACT

Skin regeneration after an injury is very vital, but this process can be impeded by several factors. Regenerative medicine is a developing biomedical field with the potential to decrease the need for an organ transplant. Wound management is challenging, particularly for chronic injuries, despite the availability of various types of wound dressing scaffolds in the market. Some of the wound dressings that are in clinical practice have various drawbacks such as poor antibacterial and antioxidant efficacy, poor mechanical properties, inability to absorb excess wound exudates, require frequent change of dressing and fails to offer a suitable moist environment to accelerate the wound healing process. Collagen is a biopolymer and a major constituent of the extracellular matrix (ECM), making it an interesting polymer for the development of wound dressings. Collagen-based nanofibers have demonstrated interesting properties that are advantageous both in the arena of skin regeneration and wound dressings, such as low antigenicity, good biocompatibility, hemostatic properties, capability to promote cellular proliferation and adhesion, and non-toxicity. Hence, this review will discuss the outcomes of collagen-based nanofibers reported from the series of preclinical trials of skin regeneration and wound healing.

11.
Polymers (Basel) ; 13(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502997

ABSTRACT

Wound care is a major biomedical field that is challenging due to the delayed wound healing process. Some factors are responsible for delayed wound healing such as malnutrition, poor oxygen flow, smoking, diseases (such as diabetes and cancer), microbial infections, etc. The currently used wound dressings suffer from various limitations, including poor antimicrobial activity, etc. Wound dressings that are formulated from biopolymers (e.g., cellulose, chitin, gelatin, chitosan, etc.) demonstrate interesting properties, such as good biocompatibility, non-toxicity, biodegradability, and attractive antimicrobial activity. Although biopolymer-based wound dressings display the aforementioned excellent features, they possess poor mechanical properties. Gelatin, a biopolymer has excellent biocompatibility, hemostatic property, reduced cytotoxicity, low antigenicity, and promotes cellular attachment and growth. However, it suffers from poor mechanical properties and antimicrobial activity. It is crosslinked with other polymers to enhance its mechanical properties. Furthermore, the incorporation of antimicrobial agents into gelatin-based wound dressings enhance their antimicrobial activity in vitro and in vivo. This review is focused on the development of hybrid wound dressings from a combination of gelatin and other polymers with good biological, mechanical, and physicochemical features which are appropriate for ideal wound dressings. Gelatin-based wound dressings are promising scaffolds for the treatment of infected, exuding, and bleeding wounds. This review article reports gelatin-based wound dressings which were developed between 2016 and 2021.

12.
Polymers (Basel) ; 13(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206711

ABSTRACT

The negative factors that result in delayed and prolonged wound healing process include microbial pathogens, excess wound exudates, underlying conditions, smoking, obesity, etc. Most of the currently used wound dressings demonstrate an inadequate capacity to treat wounds resulting from the factors mentioned above. The commonly used wound dressings include hydrogels, films, hydrocolloids, foams, fibers, sponges, dermal patches, bandages, etc. These wound dressings can be loaded with various types of bioactive agents (e.g., antibiotics, nanoparticles, anti-inflammatory drugs, etc.) to improve their therapeutic outcomes. Biopolymers offer interesting properties suitable for the design of wound dressings. This review article will be based on hyaluronic-acid-based scaffolds loaded with therapeutic agents for the treatment of wounds.

13.
Pharmaceutics ; 13(7)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206744

ABSTRACT

The treatment of wounds is one challenging biomedical field due to delayed wound healing common in chronic wounds. Several factors delay wound healing, including microbial infections, malnutrition, underlying physiological conditions, etc. Most of the currently used wound dressing materials suffer from poor antimicrobial properties, poor biodegradability and biocompatibility, and weak mechanical performance. Plant extracts, such as Aloe vera, have attracted significant attention in wound management because of their interesting biological properties. Aloe vera is composed of essential constituents beneficial for the wound healing process, such as amino acids, vitamins C and E, and zinc. Aloe vera influences numerous factors that are involved in wound healing and stimulates accelerated healing. This review reports the therapeutic outcomes of aloe vera extract-loaded polymer-based scaffolds in wound management.

14.
Polymers (Basel) ; 13(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206747

ABSTRACT

The management of chronic wounds is challenging. The factors that impede wound healing include malnutrition, diseases (such as diabetes, cancer), and bacterial infection. Most of the presently utilized wound dressing materials suffer from severe limitations, including poor antibacterial and mechanical properties. Wound dressings formulated from the combination of biopolymers and synthetic polymers (i.e., poly (vinyl alcohol) or poly (ε-caprolactone) display interesting properties, including good biocompatibility, improved biodegradation, good mechanical properties and antimicrobial effects, promote tissue regeneration, etc. Formulation of these wound dressings via electrospinning technique is cost-effective, useful for uniform and continuous nanofibers with controllable pore structure, high porosity, excellent swelling capacity, good gaseous exchange, excellent cellular adhesion, and show a good capability to provide moisture and warmth environment for the accelerated wound healing process. Based on the above-mentioned outstanding properties of nanofibers and the unique properties of hybrid wound dressings prepared from poly (vinyl alcohol) and poly (ε-caprolactone), this review reports the in vitro and in vivo outcomes of the reported hybrid nanofibers.

15.
Pharmaceutics ; 13(7)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206857

ABSTRACT

The treatment of wounds is expensive and challenging. Most of the available wound dressings are not effective and suffer from limitations such as poor antimicrobial activity, toxicity, inability to provide suitable moisture to the wound and poor mechanical performance. The use of inappropriate wound dressings can result in a delayed wound healing process. Nanosize range scaffolds have triggered great attention because of their attractive properties, which include their capability to deliver bioactive agents, high surface area, improved mechanical properties, mimic the extracellular matrix (ECM), and high porosity. Nanofibrous materials can be further encapsulated/loaded with metal-based nanoparticles to enhance their therapeutic outcomes in wound healing applications. The widely studied metal-based nanoparticles, silver nanoparticles exhibit good properties such as outstanding antibacterial activity, display antioxidant, and anti-inflammatory properties, support cell growth, making it an essential bioactive agent in wound dressings. This review article reports the biological (in vivo and in vitro) and mechanical outcomes of nanofibrous scaffolds loaded with silver nanoparticles on wound healing.

16.
Pharmaceutics ; 12(12)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33333778

ABSTRACT

Breast cancer is among the most common types of cancer in women and it is the cause of a high rate of mortality globally. The use of anticancer drugs is the standard treatment approach used for this type of cancer. However, most of these drugs are limited by multi-drug resistance, drug toxicity, poor drug bioavailability, low water solubility, poor pharmacokinetics, etc. To overcome multi-drug resistance, combinations of two or more anticancer drugs are used. However, the combination of two or more anticancer drugs produce toxic side effects. Micelles and dendrimers are promising drug delivery systems that can overcome the limitations associated with the currently used anticancer drugs. They have the capability to overcome drug resistance, reduce drug toxicity, improve the drug solubility and bioavailability. Different classes of anticancer drugs have been loaded into micelles and dendrimers, resulting in targeted drug delivery, sustained drug release mechanism, increased cellular uptake, reduced toxic side effects of the loaded drugs with enhanced anticancer activity in vitro and in vivo. This review article reports the biological outcomes of dendrimers and micelles loaded with different known anticancer agents on breast cancer in vitro and in vivo.

17.
Int J Mol Sci ; 21(24)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33352826

ABSTRACT

Wound management remains a challenge worldwide, although there are several developed wound dressing materials for the management of acute and chronic wounds. The wound dressings that are currently used include hydrogels, films, wafers, nanofibers, foams, topical formulations, transdermal patches, sponges, and bandages. Hydrogels exhibit unique features which make them suitable wound dressings such as providing a moist environment for wound healing, exhibiting high moisture content, or creating a barrier against bacterial infections, and are suitable for the management of exuding and granulating wounds. Biopolymers have been utilized for their development due to their non-toxic, biodegradable, and biocompatible properties. Hydrogels have been prepared from biopolymers such as cellulose and chitosan by crosslinking with selected synthetic polymers resulting in improved mechanical, biological, and physicochemical properties. They were useful by accelerating wound re-epithelialization and also mimic skin structure, inducing skin regeneration. Loading antibacterial agents into them prevented bacterial invasion of wounds. This review article is focused on hydrogels formulated from two biopolymers-chitosan and cellulose-for improved wound management.


Subject(s)
Cellulose/chemistry , Chitosan/chemistry , Hydrogels/chemistry , Wound Healing , Animals , Biopolymers/chemistry , Burns/etiology , Burns/therapy , Clinical Trials as Topic , Diabetes Complications , Humans , Wounds and Injuries/etiology , Wounds and Injuries/therapy
18.
Polymers (Basel) ; 12(10)2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33036130

ABSTRACT

Some of the currently used wound dressings have interesting features such as excellent porosity, good water-absorbing capacity, moderate water vapor transmission rate, high drug loading efficiency, and good capability to provide a moist environment, but they are limited in terms of antimicrobial properties. Their inability to protect the wound from microbial invasion results in wound exposure to microbial infections, resulting in a delayed wound healing process. Furthermore, some wound dressings are loaded with synthetic antibiotics that can cause adverse side effects on the patients. Natural-based compounds exhibit unique features such as good biocompatibility, reduced toxicity, etc. Curcumin, one such natural-based compound, has demonstrated several biological activities such as anticancer, antibacterial and antioxidant properties. Its good antibacterial and antioxidant activity make it beneficial for the treatment of wounds. Several researchers have developed different types of polymer-based wound dressings which were loaded with curcumin. These wound dressings displayed excellent features such as good biocompatibility, induction of skin regeneration, accelerated wound healing processes and excellent antioxidant and antibacterial activity. This review will be focused on the in vitro and in vivo therapeutic outcomes of wound dressings loaded with curcumin.

19.
Nanomaterials (Basel) ; 10(8)2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32784356

ABSTRACT

Cancer remains a heavy health burden resulting in a high rate of mortality around the world. The presently used anticancer drugs suffer from several shortcomings, such as drug toxicity, poor biodegradability and bioavailability, and poor water solubility and drug resistance. Cancer is treated effectively by combination therapy whereby two or more anticancer drugs are employed. Most of the combination chemotherapies result in a synergistic effect and overcome drug resistance. Furthermore, the design of polymer-based nanocarriers for combination therapy has been reported by several researchers to result in promising therapeutic outcomes in cancer treatment. Curcumin exhibits good anticancer activity but its poor bioavailability has resulted in its incorporation into several polymer-based nanocarriers resulting in good biological outcomes. Furthermore, the incorporation of curcumin together with other anticancer drugs have been reported to result in excellent therapeutic outcomes in vivo and in vitro. Due to the potential of polymer-based nanocarriers, this review article will be focused on the design of polymer-based nanocarriers loaded with curcumin together with other anticancer drugs.

20.
Pharmaceutics ; 12(8)2020 Aug 09.
Article in English | MEDLINE | ID: mdl-32784933

ABSTRACT

Cancer, malaria, and leishmaniasis remain the deadly diseases around the world although several strategies of treatment have been developed. However, most of the drugs used to treat the aforementioned diseases suffer from several pharmacological limitations such as poor pharmacokinetics, toxicity, drug resistance, poor bioavailability and water solubility. Artemisinin and its derivatives are antimalarial drugs. However, they also exhibit anticancer and antileishmanial activity. They have been evaluated as potential anticancer and antileishmanial drugs but their use is also limited by their poor water solubility and poor bioavailability. To overcome the aforementioned limitations associated with artemisinin and its derivatives used for the treatment of these diseases, they have been incorporated into nanoparticles. Several researchers incorporated this class of drugs into nanoparticles resulting in enhanced therapeutic outcomes. Their potential efficacy for the treatment of parasitic infections such as malaria and leishmaniasis and chronic diseases such as cancer has been reported. This review article will be focused on the nanoparticles formulations of artemisinin and derivatives for the treatment of cancer, malaria, and leishmaniasis and the biological outcomes (in vitro and in vivo).

SELECTION OF CITATIONS
SEARCH DETAIL
...