Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Funct Biomater ; 14(12)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38132809

ABSTRACT

Bone critical-size defects and non-union fractures have no intrinsic capacity for self-healing. In this context, the emergence of bone engineering has allowed the development of functional alternatives. The aim of this study was to evaluate the capacity of ASC spheroids in bone regeneration using a synergic strategy with 3D-printed scaffolds made from poly (lactic acid) (PLA) and nanostructured hydroxyapatite doped with carbonate ions (CHA) in a rat model of cranial critical-size defect. In summary, a set of results suggests that ASC spheroidal constructs promoted bone regeneration. In vitro results showed that ASC spheroids were able to spread and interact with the 3D-printed scaffold, synthesizing crucial growth factors and cytokines for bone regeneration, such as VEGF. Histological results after 3 and 6 months of implantation showed the formation of new bone tissue in the PLA/CHA scaffolds that were seeded with ASC spheroids. In conclusion, the presence of ASC spheroids in the PLA/CHA 3D-printed scaffolds seems to successfully promote bone formation, which can be crucial for a significant clinical improvement in critical bone defect regeneration.

2.
Polymers (Basel) ; 13(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34372057

ABSTRACT

Guided bone regeneration involves excluding non-osteogenic cells from the surrounding soft tissues and allowing osteogenic cells originating from native bone to inhabit the defect. The aim of this work was to fabricate, analyze antibiofilm activity and evaluate in vivo biological response of poly (lactic-co-glycolic acid) (PLGA) electrospun membranes incorporated with tea tree oil and furan-2(5H)-one. Samples were exposed to Streptococcus mutans culture and after 48 h incubation, biofilm was evaluated by colony forming units (CFU/mL) followed by scanning electron microscopy. Additionally, seventy-five Balb-C mice were divided into five experimental groups for subcutaneous implantation: tea tree oil loaded PLGA electrospun fiber membrane, furanone loaded PLGA electrospun fiber membrane, neat PLGA electrospun fiber membrane, a commercially available PLGA membrane -Pratix® and Sham (no-membrane implantation). Post implantation period of each experimental group (1, 3 and 9 weeks), samples were collected and processed for by histological descriptive and semiquantitative evaluation. Results showed a significant reduction of bacterial attachment on tea tree oil and furan-2(5H)-one incorporated membranes. Macrophage counts were significant found in all the materials implanted, although giant cells were predominantly associated with electrospun fiber membranes. The incorporation of antibiofilm compounds in nanofibers membranes did not incite inflammatory response significantly different in comparison with pure PLGA electrospun membranes, indicating its potential for development of novel functionalized membranes targeting the inhibition of bacterial biofilms on membrane-grafting materials.

3.
Article in English | MEDLINE | ID: mdl-33440647

ABSTRACT

Synthetic biphasic calcium phosphate (BCP) granules and powder are biocompatible biomaterials with a well-known capacity for osteoconduction, presenting very satisfactory clinical and histological results. It remains unanswered if the putty configuration impacts the biological response to the material. In this study, we aimed to compare the cytocompatibility and biocompatibility of nanostructured BCP in the putty configuration (moldable nanostructured calcium phosphate, MnCaP) on the healing of critical-sized bone defects (8 mm) in rat calvaria. Cytocompatibility was determined through the viability of fibroblast cells (V-79) to the extracts of different concentrations of MnCaP. Forty-five Wistar rats were randomly divided into three groups (n = 15)-clot, MnCaP, and commercial biphasic calcium phosphate in granules configurations (Nanosynt®)-and subdivided into three experimental periods (1, 3, and 6 months). Histological, histomorphometric, and microtomographic analyses allowed the evaluation of newly formed bone, residual biomaterial, and connective tissue. The in vitro evaluation showed that MnCaP was cytocompatible. The histomorphometric results showed that the Nanosynt® group granted the highest new-formed bone values at six months (p < 0.05), although the biomaterial volume did not differ between groups. The putty configuration was easier to handle, and both configurations were biocompatible and osteoconductive, presented similar biosorption rates, and preserved the calvaria architecture.


Subject(s)
Bone Substitutes , Animals , Bone Regeneration , Hydroxyapatites , Rats , Rats, Wistar
4.
J Oral Implantol ; 47(6): 465-471, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-33270849

ABSTRACT

To preserve alveolar bone thickness and width after extraction, clinical strategies have been adopted to reduce or eliminate the need for future surgical interventions to increase the alveolar ridge. The use of xenogeneic biomaterials has been increasing for such application. The association of bone substitutes with active oxygen-based materials, which is essential in the wound-healing process, could accelerate bone repair, optimizing the maintenance of alveolar architecture after extraction. However, the truth of this hypothesis is not clear. The present study aimed to compare the biological response to inorganic bovine bone graft Bonefill (BF), associated or not with active oxygen-based oral gel Bluem (BF+BM), in alveolar bone repair. Twenty female Wistar rats were randomly allocated. The left upper central incisor was extracted, and the dental sockets were filled with BF in the control group (n = 10) and with BF+BM in the experimental group (n = 10). The animals were euthanized at 7 and 42 days after implantation (n = 5), and the samples were processed for descriptive histological and histomorphometric evaluations. The results showed no significant difference between the groups (P > .05). Both groups presented a time-dependent increase in newly formed bone and biosorption biomaterial (P = .0001). The association between active oxygen-based gel and inorganic bovine bone graft did not interfere with or improve bone repair during the experimental periods of alveolar bone repair in rats.


Subject(s)
Alveolar Bone Loss , Alveolar Ridge Augmentation , Bone Substitutes , Animals , Cattle , Female , Heterografts , Oxygen , Rats , Rats, Wistar , Tooth Extraction , Tooth Socket/surgery
5.
Polymers (Basel) ; 13(1)2020 Dec 27.
Article in English | MEDLINE | ID: mdl-33375451

ABSTRACT

This study aimed to assess the response of 3D printed polylactic acid (PLA) scaffolds biomimetically coated with apatite on human primary osteoblast (HOb) spheroids and evaluate the biological response to its association with Bone Morphogenetic Protein 2 (rhBMP-2) in rat calvaria. PLA scaffolds were produced via 3D printing, soaked in simulated body fluid (SBF) solution to promote apatite deposition, and characterized by physical-chemical, morphological, and mechanical properties. PLA-CaP scaffolds with interconnected porous and mechanical properties suitable for bone repairing were produced with reproducibility. The in vitro biological response was assessed with human primary osteoblast spheroids. Increased cell adhesion and the rise of in vitro release of growth factors (Platelet-Derived Growth Factor (PDGF), Basic Fibroblast Growth Factor (bFGF), Vascular Endothelial Growth Factor (VEGF) was observed for PLA-CaP scaffolds, when pre-treated with fetal bovine serum (FBS). This pre-treatment with FBS was done in a way to enhance the adsorption of serum proteins, increasing the number of bioactive sites on the surface of scaffolds, and to partially mimic in vivo interactions. The in vivo analysis was conducted through the implantation of 3D printed PLA scaffolds either alone, coated with apatite (PLA-CaP) or PLA-CaP loaded with rhBMP-2 on critical-sized defects (8 mm) of rat calvaria. PLA-CaP+rhBMP2 presented higher values of newly formed bone (NFB) than other groups at all in vivo experimental periods (p < 0.05), attaining 44.85% of NFB after six months. These findings indicated two new potential candidates as alternatives to autogenous bone grafts for long-term treatment: (i) 3D-printed PLA-CaP scaffold associated with spheroids, since it can reduce the time of repair in situ by expression of biomolecules and growth factors; and (ii) 3D-printed PLA-CaP functionalized rhBMP2 scaffold, a biocompatible, bioactive biomaterial, with osteoconductivity and osteoinductivity.

6.
Mater Sci Eng C Mater Biol Appl ; 112: 110965, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32409093

ABSTRACT

The apoptosis-associated Speck-like protein containing a caspase-1 recruitment domain (ASC), present in inflammasomes, regulates inflammation events and is involved in osteogenic phenotype. Nevertheless, its function in bone repair induced by bone substitute biomaterials is unclear. This study aimed to unveil the role of ASC on osteoprogenitor and tissue response to stoichiometric-hydroxyapatite (HA), nanostructured carbonated-hydroxyapatite (CHA), and CHA containing 5% Strontium (SrCHA), characterized previously by XRD, uXRF-SR, and FTIR spectroscopy implants. Thereafter, conditioned media by the biomaterials were used later to treat pre-osteoblasts and an osteogenic stimulus was shown in response to the materials, with higher expression of Runx2, Osterix, ALP, and Collagen 1a1 genes, with significant involvement of inflammatory-related genes. Thus, to better address the involvement of inflammasome, primary cells obtained from both genotypes [Wild-Type (WT) and ASC Knockout (ASC-KO) mice] were subjected to conditioned media up to 7 days, and our data reinforces both HA and CHA induces lower levels of alkaline phosphatase (ALP) than SrCHA, considering both genotypes (p < 0.01), and ASC seems contribute with osteogenic stimulus promoted by SrCHA. Complimentarily, the biomaterials were implanted into both subcutaneous and bone defects in tibia. Histological analysis on 28 days after implantation of biomaterials into mice's subcutaneous tissue revealed moderate inflammatory response to them. Both histomorphometry and µCT analysis of tibias indicated that the biomaterials did not reverse the delay in bone repair of ASC KO, reinforcing the involvement of ASC on bone regeneration and bone de novo deposition. Also, the bone density in CHA was >2-fold higher in WT than ASC-KO samples. HA was virtually not resorbed throughout the experimental periods, in opposition to CHA in the WT group. CHA reduced to half-area after 28 days, and the bone deposition was higher in CHA for WT mice than HA. Taken together, our results show that biomaterials did not interfere with the healing pattern of the ASC KO, but CHA promoted higher bone deposition in the WT group, probably due to its greater biodegradability. These results reinforce the importance of ASC during bone de novo deposition and healing.


Subject(s)
Biocompatible Materials/chemistry , Bone Substitutes/chemistry , Caspase 1/chemistry , Animals , Apoptosis/drug effects , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Bone Diseases/diagnostic imaging , Bone Diseases/pathology , Bone Diseases/therapy , Bone Substitutes/pharmacology , Bone Substitutes/therapeutic use , Carbonates/chemistry , Caspase 1/deficiency , Caspase 1/genetics , Cells, Cultured , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/pharmacology , Durapatite/chemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Nanostructures/chemistry , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis/drug effects , Prostheses and Implants , Strontium/chemistry , Tibia/diagnostic imaging , Tibia/pathology
7.
J Biomed Mater Res B Appl Biomater ; 108(4): 1351-1362, 2020 05.
Article in English | MEDLINE | ID: mdl-31496111

ABSTRACT

Drug delivery technology is a promising way to enhance the therapeutic efficacy of drugs. The purpose of this study is to evaluate the physical and chemical properties of hydroxyapatite ceramic microspheres loaded with doxycycline (HADOX), their effects on in vitro osteoblast viability, and their antimicrobial activity, and to determine the effects of DOX on the healing of rat sockets after tooth extraction. The internal microsphere porosity was sensitive to the treatment used to adsorb DOX onto microsphere surface; HA microspheres without DOX presented 26% of pores, whereas HADOX0.15 microspheres presented 52.0%. An initial drug release of 49.15 µg/ml was observed in the first 24 hr. The minimal inhibitory concentration (MIC) tested against Enterococcus faecalis demonstrated that bacterial growth was inhibited for up to 7 days. Results of cell viability and cell proliferation did not indicate statistical differences in the metabolic activity of HADOX samples relative to HA without DOX microspheres (p > .05). After 1 week, a discreet inflammation reaction was observed in the control group, and after 6 weeks, newly-formed bone was observed in the HADOX0.15 (p < .05). The HADOX did not interfere in the bone repair and controlled the early inflammatory response. HADOX could be a promising biomaterial to promote bone repair in infected sites.


Subject(s)
Ceramics , Doxycycline , Drug Delivery Systems , Durapatite , Microspheres , Osteoblasts/metabolism , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Ceramics/chemistry , Ceramics/pharmacokinetics , Ceramics/pharmacology , Doxycycline/chemistry , Doxycycline/pharmacokinetics , Doxycycline/pharmacology , Durapatite/chemistry , Durapatite/pharmacokinetics , Durapatite/pharmacology , Enterococcus faecalis/growth & development , Female , Male , Mice , Rats , Rats, Wistar
8.
Materials (Basel) ; 12(22)2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31698693

ABSTRACT

The properties of the biodegradation of bone substitutes in the dental socket after extraction is one of the goals of regenerative medicine. This double-blind, randomized, controlled clinical trial aimed to compare the effects of a new bioabsorbable nanostructured carbonated hydroxyapatite (CHA) with a commercially available bovine xenograft (Bio-Oss®) and clot (control group) in alveolar preservation. Thirty participants who required tooth extraction and implant placement were enrolled in this study. After 90 days, a sample of the grafted area was obtained for histological and histomorphometric evaluation and an implant was installed at the site. All surgical procedures were successfully carried out without complications and none of the patients were excluded. The samples revealed a statistically significant increase of new bone formation (NFB) in the CHA group compared with Bio-Oss® after 90 days from surgery (p < 0.05). However, the clot group presented no differences of NFB compared to CHA and Bio-Oss®. The CHA group presented less amount of reminiscent biomaterial compared to Bio-Oss®. Both biomaterials were considered osteoconductors, easy to handle, biocompatible, and suitable for alveolar filling. Nanostructured carbonated hydroxyapatite spheres promoted a higher biodegradation rate and is a promising biomaterial for alveolar socket preservation before implant treatment.

9.
Int J Nanomedicine ; 14: 3471-3490, 2019.
Article in English | MEDLINE | ID: mdl-31190805

ABSTRACT

Background: Zinc-doped hydroxyapatite has been proposed as a graft biomaterial for bone regeneration. However, the effect of zinc on osteoconductivity is still controversial, since the release and resorption of calcium, phosphorus, and zinc in graft-implanted defects have rarely been studied. Methods: Microspheres containing alginate and either non-doped carbonated hydroxyapatite (cHA) or nanocrystalline 3.2 wt% zinc-doped cHA (Zn-cHA) were implanted in critical-sized calvarial defects in Wistar rats for 1, 3, and 6 months. Histological and histomorphometric analyses were performed to evaluate the volume density of newly formed bone, residual biomaterial, and connective tissue formation. Biomaterial degradation was characterized by transmission electron microscopy (TEM) and synchrotron radiation-based X-ray microfluorescence (SR-µXRF), which enabled the elemental mapping of calcium, phosphorus, and zinc on the microsphere-implanted defects at 6 months post-implantation. Results: The bone repair was limited to regions close to the preexistent bone, whereas connective tissue occupied the major part of the defect. Moreover, no significant difference in the amount of new bone formed was found between the two microsphere groups. TEM analysis revealed the degradation of the outer microsphere surface with detachment of the nanoparticle aggregates. According to SR-µXRF, both types of microspheres released high amounts of calcium, phosphorus, and zinc, distributed throughout the defective region. The cHA microsphere surface strongly adsorbed the zinc from organic constituents of the biological fluid, and phosphorus was resorbed more quickly than calcium. In the Zn-cHA group, zinc and calcium had similar release profiles, indicating a stoichiometric dissolution of these elements and non-preferential zinc resorption. Conclusions: The nanometric size of cHA and Zn-cHA was a decisive factor in accelerating the in vivo availability of calcium and zinc. The high calcium and zinc accumulation in the defect, which was not cleared by the biological medium, played a critical role in inhibiting osteoconduction and thus impairing bone repair.


Subject(s)
Alginates/chemistry , Bone Regeneration , Calcium/metabolism , Durapatite/chemistry , Microspheres , Nanoparticles/chemistry , Zinc/chemistry , Zinc/metabolism , Animals , Biocompatible Materials/chemistry , Biological Availability , Bone Regeneration/drug effects , Carbonates/chemistry , Cell Death , Cell Line , Cell Survival , Female , Mice , Nanoparticles/ultrastructure , Rats, Wistar , Skull/physiology , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
10.
Clin Oral Implants Res ; 28(8): 893-901, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27317626

ABSTRACT

OBJECTIVE: The aim of this preclinical study was to compare histologically and histomorphometrically both sandblasted/acid-etched implant surfaces with or without maintained in an isotonic solution of 0.9% sodium chloride in early stages of osseointegration. MATERIAL AND METHODS: Both implant surfaces were composed of a titanium/aluminum/vanadium alloy (Ti6Al4V-ELI), but they had different surface chemistries: sandblasted/acid-etched titanium surface (FN) or sandblasted/acid-etched surface maintained in an isotonic solution of 0.9% sodium chloride (FA). The surface morphology, topography and chemistry were evaluated by scanning electron microscopy (SEM), confocal microscopy (CM) and X-ray photoelectron spectroscopy (XPS), respectively. Dynamic contact angle (DCA) was employed for wettability evaluation. One implant from each group was placed in the left tibia of twenty healthy, skeletally mature Santa Ines sheep (n = 5). Bone area (BA) and bone-to-implant contact (BIC) were performed on thin sections (30 µm) at 7, 14, 21 and 28 days after implant installation. RESULTS: Despite the roughness and morphology similarities between the groups, at the XPS evaluation, the FA group presented 2.3 times less carbon on the surface (FN: 27.3% and FA: 11.6%), sharply enhanced hydrophilicity and significantly enhanced BA and BIC at 14, 21 and 28 days of healing (P < 0.05) compared with the FN. CONCLUSION: The data suggest that the hydrophilic FA accelerates the BA apposition and BIC interface around the implants during early stages of bone formation, providing highest degree of osseointegration.


Subject(s)
Bone-Implant Interface/pathology , Osseointegration , Tibia/surgery , Titanium , Alloys , Animals , Dental Implantation, Endosseous/methods , Dental Implants , Hydrophobic and Hydrophilic Interactions , Microscopy, Confocal , Microscopy, Electron, Scanning , Sheep , Surface Properties , Tibia/pathology
11.
J Biomed Mater Res B Appl Biomater ; 104(2): 274-82, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25716009

ABSTRACT

Various synthetic bone substitutes have been developed to reconstruct bone defects. One of the most prevalent ceramics in bone treatment is hydroxyapatite (HA) that is a useful material as bone substitute, however, with a low rate of biodegradation. Its structure allows isomorphic cationic and anionic substitutions to be easily introduced, which can alter the crystallinity, morphology, biocompatibility, and osteoconductivity. The objective of this study was to investigate the in vitro and in vivo biological responses to strontium-containing nanostructured carbonated HA/sodium alginate (SrCHA) spheres (425<ϕ <600 µm) that were used for sinus lifts in rabbits using nanostructured carbonated HA/sodium alginate (CHA) as a reference. Cytocompatibility was determined using a multiparametric assay after exposing murine preosteoblasts to the extracts of these materials. Twelve male and female rabbits underwent bilateral sinus lift procedures and were divided into two groups (CHA or SrCHA) and in two experimental periods (4 and 12 weeks), for microscopic and histomorphometric analyses. The in vitro test revealed the overall viability of the cells exposed to the CHA and SrCHA extracts; thus, these extracts were considered cytocompatible, which was confirmed by three different parameters in the in vitro tests. The histological analysis showed chronic inflammation with a prevalence of macrophages around the CHA spheres after 4 weeks, and this inflammation decreased after 12 weeks. Bone formation was observed in both groups, and smaller quantities of SrCHA spheres were observed after 12 weeks, indicating greater bioresorption of SrCHA than CHA. SrCHA spheres are biocompatible and osteoconductive and undergo bioresorption earlier than CHA spheres.


Subject(s)
Alginates , Bone Substitutes , Cranial Sinuses/surgery , Durapatite , Nanostructures/chemistry , Strontium , Alginates/chemistry , Alginates/pharmacology , Animals , Bone Regeneration/drug effects , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Cell Line , Cranial Sinuses/injuries , Cranial Sinuses/metabolism , Drug Evaluation, Preclinical , Durapatite/chemistry , Durapatite/pharmacology , Female , Glucuronic Acid/chemistry , Glucuronic Acid/pharmacology , Hexuronic Acids/chemistry , Hexuronic Acids/pharmacology , Male , Materials Testing/methods , Mice , Rabbits , Strontium/chemistry , Strontium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...