Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 13: 1290505, 2023.
Article in English | MEDLINE | ID: mdl-38107068

ABSTRACT

Background: Children with B-cell acute lymphoblastic leukemia (B-ALL) have an immune imbalance that is marked by remodeling of the hematopoietic compartment, with effects on peripheral blood (PB). Although the bone marrow (BM) is the main maintenance site of malignancy, the frequency with which immune cells and molecules can be monitored is limited, thus the identification of biomarkers in PB becomes an alternative for monitoring the evolution of the disease. Methods: Here, we characterize the systemic immunological profile in children undergoing treatment for B-ALL, and evaluate the performance of cell populations, chemokines and cytokines as potential biomarkers during clinical follow-up. For this purpose, PB samples from 20 patients with B-ALL were collected on diagnosis (D0) and during induction therapy (days 8, 15 and 35). In addition, samples from 28 children were used as a control group (CG). The cellular profile (NK and NKT-cells, Treg, CD3+ T, CD4+ T and CD8+ T cells) and soluble immunological mediators (CXCL8, CCL2, CXCL9, CCL5, CXCL10, IL-6, TNF, IFN-γ, IL-17A, IL- 4, IL-10 and IL-2) were evaluated via flow cytometry immunophenotyping and cytometric bead array assay. Results: On D0, B-ALL patients showed reduction in the frequency of cell populations, except for CD4+ T and CD8+ T cells, which together with CCL2, CXCL9, CXCL10, IL-6 and IL-10 were elevated in relation to the patients of the CG. On D8 and D15, the patients presented a transition in the immunological profile. While, on D35, they already presented an opposite profile to D0, with an increase in NKT, CD3+ T, CD4+ T and Treg cells, along with CCL5, and a decrease in the levels of CXCL9, CXCL10 and IL-10, thus demonstrating that B-ALL patients present a complex and dynamic immune network during induction therapy. Furthermore, we identified that many immunological mediators could be used to classify the therapeutic response based on currently used parameters. Conclusion: Finally, it is noted that the systemic immunological profile after remission induction still differs significantly when compared to the GC and that multiple immunological mediators performed well as serum biomarkers.

2.
Front Oncol ; 11: 696032, 2021.
Article in English | MEDLINE | ID: mdl-34646761

ABSTRACT

Different factors are used as predictors of unfavorable clinical outcomes in B-Cell Acute Lymphoblastic Leukemia (B-ALL) patients. However, new prognostic markers are needed in order to allow treatment to be more accurate, providing better results and an improved quality of life. In the present study, we have characterized the profile of bone marrow soluble mediators as possible biomarkers for risk group stratification and minimal residual disease (MRD) detection during induction therapy. The study featured 47 newly-diagnosed B-cell acute lymphoblastic leukemia (B-ALL) patients that were categorized into subgroups during induction therapy according to risk stratification at day 15 [Low Risk (LR), Low Risk increasing to High Risk (LR→HR) and High Risk (HR)] and the MRD detection on day 35 (MRD(-) and MRD(+)). Soluble immunological mediators (CXCL8, CCL2, CXCL9, CCL5, CXCL10, IL-1ß, IL-6, TNF, IFN-γ, IL-17A, IL-4, IL-5, IL-10 and IL-2) were quantified by cytometric bead array and ELISA. Our findings demonstrated that increased levels of CCL5, IFN-γ and IL-2 at baseline appeared as putative candidates of good prognosis in LR and MRD(-) subgroups, while CCL2 was identified as a consistent late biomarker associated with poor prognosis, which was observed on D35 in HR and MRD(+) subgroups. Furthermore, apparently controversial data regarding IL-17A and TNF did not allow the definition of these molecules as either positive or negative biomarkers. These results contribute to the search for novel prognostic indicators, and indicate the potential of bone marrow soluble mediators in prognosis and follow-up of B-ALL patients during induction therapy.

3.
J Oncol ; 2021: 5530650, 2021.
Article in English | MEDLINE | ID: mdl-34335758

ABSTRACT

In the hematopoietic microenvironment, leukemic cells secrete factors that imbalanced chemokine and cytokine production. However, the network of soluble immunological molecules in the bone marrow microenvironment of acute lymphoblastic leukemia (ALL) remains underexplored. Herein, we evaluated the levels of the immunological molecules (CXCL8, CCL2, CXCL9, CCL5, CXCL10, IL-6, TNF, IFN-γ, IL-17A, IL-4, IL-10, and IL-2) in the bone marrow plasma of 47 recently diagnosed B-cell acute lymphoblastic leukemia (B-ALL) patients during induction therapy using cytometric beads arrays. The results demonstrated that B-ALL patients showed high levels of CXCL9, CXCL10, IL-6, and IL-10 at the time of diagnosis, while at the end of induction therapy, a decrease in the levels of these immunological molecules and an increase in CCL5, IFN-γ, and IL-17A levels were observed. These findings indicate that B-ALL patients have an imbalance in chemokines and cytokines in the bone marrow microenvironment that contributes to suppressing the immune response. This immune imbalance may be associated with the presence of leukemic cells since, at the end of the induction therapy, with the elimination and reduction to residual cells, the proinflammatory profile is reestablished, characterized by an increase in the cytokines of the Th1 and Th17 profiles.

4.
Sci Rep ; 6: 31179, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27526794

ABSTRACT

Risk stratification and treatment intensification, based on minimal residual disease (MRD) mensurement, changed the prognosis of pediatric patients with acute lymphocytic leukemia (ALL). The main aim of this study was to investigate whether peripheral blood (PB) MRD measurement at day 8 (D8) could predict the risk stratification category determined by bone marrow (BM) MRD at day 15 (D15). The study was performed prospectively, in a cohort of 40 children with B-lineage ALL, adopting the protocol of the Brazilian Cooperative Group of the Treatment Childhood Leukemia (GBTLI-2009). MRD was detected by flow cytometry (FC) using a simplifed panel that can reliably identify MRD at early phases of induction therapy. Upon diagnosis, the proportion of low and high-risk patients, was 24:16 (60%:40%). The main result of our study demonstrated the potential of D8 MRD in anticipating of week the risk stratification of high-risk patients as determined by D15 BM MRD. In these patients D8 MRD level of 1% was able to segregate high risk fast responders from high risk slow responders (p = 0.0097). This result could represent an opportunity for early treatment intensification, as already performed in some protocols.


Subject(s)
Induction Chemotherapy , Neoplasm, Residual , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male
5.
Parasit Vectors ; 7: 484, 2014 Oct 18.
Article in English | MEDLINE | ID: mdl-25325923

ABSTRACT

BACKGROUND: Apoptosis can occur in red blood cells (RBC) and seems to be involved in hematologic disorders related to many diseases. In malaria it is known that parasitized RBC (pRBC) is involved in the development of anemia and thrombosis; however, non-parasitized RBC (nRBC) apoptosis could amplify these malaria-associated hematologic events. In fact, in experimental malaria, increased levels of apoptosis were observed in nRBC during lethal Plasmodium yoelii 17XL infection, but in human malaria erythrocytic apoptosis has never been studied. The present study was performed to investigate if nRBC apoptosis also occurs in P. vivax and P. falciparum infections. FINDINGS: Apoptosis of nRBC was evaluated in blood samples of P. vivax malaria patients and clinically healthly individuals living in Manaus, Brazil, both ex vivo and after incubation of RBC for 24 h. Additionally, the capacity of plasma from P. vivax or P. falciparum patients was tested for induction of in vitro apoptosis of normal RBC from a clinically healthy individual living in a non-endemic malaria region. Apoptosis was detected by flow cytometry using annexin V staining. In contrast to experimental malaria that significantly increased the levels of apoptotic nRBC both ex-vivo and after 24 h of incubation, no significant alteration on apoptotic nRBC rates was detected in P. vivax infected patients when compared with non-infected control individuals. Similar results were observed when plasma of these P. vivax patients was incubated with normal RBC. Conversely, plasma from P. falciparum-infected subjects induced significant apoptosis of these cells. CONCLUSIONS: Apoptosis of normal RBC can be induced by plasma from individuals with P. falciparum (but not with P. vivax) malaria. This finding could reflect the existence of erythrocytic apoptosis during infection that could contribute to the pathogenesis of hematological and vascular complications associated with falciparum malaria.


Subject(s)
Apoptosis/physiology , Erythrocytes/parasitology , Malaria, Falciparum/parasitology , Malaria, Vivax/parasitology , Plasmodium falciparum/physiology , Plasmodium vivax/physiology , Erythrocytes/physiology , Humans , Parasitemia
SELECTION OF CITATIONS
SEARCH DETAIL
...