Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
New Phytol ; 238(5): 1762-1770, 2023 06.
Article in English | MEDLINE | ID: mdl-36880374

ABSTRACT

Global warming and more frequent climate extremes have caused bark beetle outbreaks of unprecedented scale of these insects in many conifer forests world-wide. Conifers that have been weakened by drought and heat or damaged by storms are highly susceptible to bark beetle infestation. A large proportion of trees with impaired defences provides good conditions for beetle population build-up of beetles, but mechanisms driving host search of pioneer beetles are still uncertain in several species, including the Eurasian spruce bark beetle Ips typographus. Despite a two-century-long history of bark beetle research, we still lack a sufficient understanding of interactions between I. typographus and its host Norway spruce (Picea abies) to forecast future disturbance regimes and forest dynamics. Depending on the scale (habitat or patch) and beetle population state (endemic or epidemic), host selection is likely driven by a combination of pre and postlanding cues, including visual selection or olfactory detection (kairomones). Here, we discuss primary attraction mechanisms and how volatile emission profiles of Norway spruce may provide cues on tree vitality and suitability for attacks by I. typographus, in particular during the endemic phase. We identify several crucial knowledge gaps and provide a research agenda addressing the experimental challenges of such investigations.


Subject(s)
Coleoptera , Picea , Weevils , Animals , Trees , Cues , Plant Bark
2.
Microb Ecol ; 85(2): 411-428, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35124727

ABSTRACT

Recently, a new annotation tool "FungalTraits" was created based on the previous FUNGuild and FunFun databases, which has attracted high attention in the scientific community. These databases were widely used to gain more information from fungal sequencing datasets by assigning fungal functional traits. More than 1500 publications so far employed FUNGuild and the aim of this study is to compare this successful database with the recent FungalTraits database. Quality and quantity of the assignment by FUNGuild and FungalTraits to a fungal internal transcribed spacer (ITS)-based amplicon sequencing dataset on amplicon sequence variants (ASVs) were addressed. Sequencing dataset was derived from leaves and needles of 12 temperate broadleaved and coniferous tree species. We found that FungalTraits assigned more functional traits than FUNGuild, and especially the coverage of saprotrophs, plant pathogens, and endophytes was higher while lichenized fungi revealed similar findings. Moreover, ASVs derived from leaves and needles of each tree species were better assigned to all available fungal traits as well as to saprotrophs by FungalTraits compared to FUNGuild in particular for broadleaved tree species. Assigned ASV richness as well as fungal functional community composition was higher and more diverse after analyses with FungalTraits compared to FUNGuild. Moreover, datasets of both databases showed similar effect of environmental factors for saprotrophs but for endophytes, unidentical patterns of significant corresponding factors were obtained. As a conclusion, FungalTraits is superior to FUNGuild in assigning a higher quantity and quality of ASVs as well as a higher frequency of significant correlations with environmental factors.


Subject(s)
Mycobiome , Trees , Trees/microbiology , Fungi , Plant Leaves/microbiology
3.
Front Plant Sci ; 13: 968218, 2022.
Article in English | MEDLINE | ID: mdl-36407586

ABSTRACT

Despite the abundance of observations of foliar pathogens, our knowledge is severely lacking regarding how the potential fungal pathobiome is structured and which processes determine community assembly. In this study, we addressed these questions by analysing the potential fungal pathobiome associated with the senescing leaves and needles of 12 temperate tree species. We compared fungal plant pathogen load in the senescing leaves/needles and demonstrated that healthy-looking leaves/needles are inhabited by diverse and distinct fungal plant pathogens. We detected 400 fungal plant pathogenic ASVs belonging to 130 genera. The fungal plant pathogenic generalist, Mycosphaerella, was found to be the potential most significant contributor to foliar disease in seedlings. The analyses of assembly process and co-occurrence network showed that the fungal plant pathogenic communities in different tree types are mainly determined by stochastic processes. However, the homogenising dispersal highly contributes in broadleaf trees, whereas ecological drift plays an important role in coniferious trees. The deterministic assembly processes (dominated by variable selection) contributed more in broadleaf trees as compared to coniferous trees. We found that pH and P level significantly corresponded with fungal plant pathogenic community compositions in both tree types. Our study provides the first insight and mechanistic understanding into the community assembly, networks, and complete taxonomy of the foliar fungal pathobiome in senescing leaves and needles.

4.
NPJ Clim Atmos Sci ; 5(1): 79, 2022.
Article in English | MEDLINE | ID: mdl-36281291

ABSTRACT

Early career (EC) Earth system scientists in the Latin America and the Caribbean region (LAC) have been facing several issues, such as limited funding opportunities, substandard scientific facilities, lack of security of tenure, and unrepresented groups equality issues. On top of this, the worsening regional environmental and climatic crises call for the need for this new generation of scientists to help to tackle these crises by increasing public awareness and research. Realizing the need to converge and step up in making a collective action to be a part of the solution, the Latin America Early Career Earth System Scientist Network (LAECESS) was created in 2016. LAECESS's primary goals are to promote regional networking, foster integrated and interdisciplinary science, organize soft skills courses and workshops, and empower Latin American EC researchers. This article is an initial step towards letting the global science community grasp the current situation and hear the early career LAC science community's perspectives. The paper also presents a series of future steps needed for better scientific and social development in the LAC region.

5.
Nat Commun ; 10(1): 1046, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837467

ABSTRACT

One of the least understood aspects in atmospheric chemistry is how urban emissions influence the formation of natural organic aerosols, which affect Earth's energy budget. The Amazon rainforest, during its wet season, is one of the few remaining places on Earth where atmospheric chemistry transitions between preindustrial and urban-influenced conditions. Here, we integrate insights from several laboratory measurements and simulate the formation of secondary organic aerosols (SOA) in the Amazon using a high-resolution chemical transport model. Simulations show that emissions of nitrogen-oxides from Manaus, a city of ~2 million people, greatly enhance production of biogenic SOA by 60-200% on average with peak enhancements of 400%, through the increased oxidation of gas-phase organic carbon emitted by the forests. Simulated enhancements agree with aircraft measurements, and are much larger than those reported over other locations. The implication is that increasing anthropogenic emissions in the future might substantially enhance biogenic SOA in pristine locations like the Amazon.

6.
Acta amaz ; 44(1): 9-18, 2014. graf
Article in English | LILACS, VETINDEX | ID: biblio-1455181

ABSTRACT

Isoprene emission from plants accounts for about one third of annual global volatile organic compound emissions. The largest source of isoprene for the global atmosphere is the Amazon Basin. This study aimed to identify and quantify the isoprene emission and photosynthesis at different levels of light intensity and leaf temperature, in three phenological phases (young mature leaf, old mature leaf and senescent leaf) of Eschweilera coriacea (Matamatل verdadeira), the species with the widest distribution in the central Amazon. In situ photosynthesis and isoprene emission measurements showed that young mature leaf had the highest rates at all light intensities and leaf temperatures. Additionally, it was observed that isoprene emission capacity (Es) changed considerably over different leaf ages. This suggests that aging leads to a reduction of both leaf photosynthetic activity and isoprene production and emission. The algorithm of Guenther et al. (1999) provided good fits to the data when incident light was varied, however differences among E S of all leaf ages influenced on quantic yield predicted by model. When leaf temperature was varied, algorithm prediction was not satisfactory for temperature higher than ~40 °C; this could be because our data did not show isoprene temperature optimum up to 45 °C. Our results are consistent with the hypothesis of the isoprene functional role in protecting plants from high temperatures and highlight the need to include leaf phenology effects in isoprene emission models.


O isopreno emitido pelas plantas corresponde em cerca de um terço das emissões globais de compostos orgânicos voláteis anualmente. A maior fonte de emissão de isopreno para a atmosfera global é a Bacia Amazônica. Este estudo objetivou identificar e quantificar a emissão de isopreno e fotossíntese em diferentes níveis de intensidade de luz e temperatura foliar, em três fases fenológicas (folha madura recente, folha madura tardia e folha senescente) de Eschweilera coriacea (Matamatá verdadeira) - a espécie com maior distribuição na Amazônia central. In situ, as medidas de fotossíntese e emissão de isopreno da folha madura recente apresentaram as maiores taxas em todos os níveis de luz e de temperatura. Adicionalmente, a capacidade de emissão de isopreno (ES) mudou consideravelmente entre as diferentes idades foliares, sugerindo que o envelhecimento reduz a atividade fotossintética e a produção/emissão de isopreno. O algoritmo de Guenther et al. (1999) demonstrou bom ajuste para a emissão de isopreno em diferentes intensidades de luz, entretanto, diferenças na ES entre as idades foliares influenciaram no rendimento quântico estimado pelo modelo. Em relação à temperatura foliar, a estimativa do algoritmo não foi satisfatória para as temperaturas acima de ~40 °C; isto provavelmente ocorreu pelo fato dos dados não apresentarem temperatura ótima até 45 °C. Nossos resultados são consistentes com a hipótese do isopreno ter um papel funcional para proteger as plantas de altas temperaturas e apontam a necessidade de incluir os efeitos da fenologia foliar em modelos de emissão de isopreno.


Subject(s)
Lecythidaceae/radiation effects , Terpenes/radiation effects , Botany/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...