Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Biomembr ; 1861(7): 1375-1387, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30926365

ABSTRACT

Infections caused by Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa foremost among them, constitute a major worldwide health problem. Bioinformatics methodologies are being used to rationally design new antimicrobial peptides, a potential alternative for treating these infections. One of the algorithms used to develop antimicrobial peptides is the Joker, which was used to design the peptide PaDBS1R6. This study evaluates the antibacterial activities of PaDBS1R6 in vitro and in vivo, characterizes the peptide interaction to target membranes, and investigates the PaDBS1R6 structure in contact with mimetic vesicles. Moreover, we demonstrate that PaDBS1R6 exhibits selective antimicrobial activity against Gram-negative bacteria. In the presence of negatively charged and zwitterionic lipids the structural arrangement of PaDBS1R6 transits from random coil to α-helix, as characterized by circular dichroism. The tertiary structure of PaDBS1R6 was determined by NMR in zwitterionic dodecylphosphocholine (DPC) micelles. In conclusion, PaDBS1R6 is a candidate for the treatment of nosocomial infections caused by Gram-negative bacteria, as template for producing other antimicrobial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Gram-Negative Bacteria/drug effects , Animals , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests
2.
Biochim Biophys Acta Biomembr ; 1861(1): 178-190, 2019 01.
Article in English | MEDLINE | ID: mdl-30463701

ABSTRACT

Antimicrobial peptides (AMPs) are promising candidates for the development of future antibiotics. In an attempt to increase the efficacy of therapeutic AMPs, computer-based design methods appear as a reliable strategy. In this study, we evaluated the antimicrobial efficiency and mechanism of action of a novel designed AMP named PaDBS1R1, previously designed by means of the Joker algorithm, using a fragment of the ribosomal protein L39E from the archaeon Pyrobaculum aerophilum as a template. PaDBS1R1 displayed low micromolar broad-spectrum antimicrobial activity against Gram-negative (MIC of 1.5 µM) and Gram-positive (MIC of 3 µM) bacteria, including carbapenem-resistant Klebsiella pneumoniae (MIC of 6.25 µM) and methicillin-resistant Staphylococcus aureus (MIC of 12.5 µM), without cytotoxicity towards HEK-293 cells. In addition, membrane permeabilization and depolarization assays, combined with time-kill studies and FEG-SEM imaging, indicated a fast membrane permeation and further leakage of intracellular content. Biophysical studies with lipid vesicles show a preference of PaDBS1R1 for Gram-negative bacteria-like membranes. We investigated the three-dimensional structure of PaDBS1R1 by CD and NMR analyses. Our results suggest that PaDBS1R1 adopts an amphipathic α-helix upon interacting with hydrophobic environments, after an initial electrostatic interaction with negative charges, suggesting a membrane lytic effect. This study reveals that PaDBS1R1 has potential application in antibiotic therapy.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Cell Membrane/drug effects , Anti-Bacterial Agents/pharmacology , Cell Membrane/metabolism , Cell Membrane Permeability/drug effects , Circular Dichroism , Gram-Negative Bacteria , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Light , Lipids/chemistry , Magnetic Resonance Spectroscopy , Methicillin-Resistant Staphylococcus aureus/drug effects , Micelles , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Protein Conformation, alpha-Helical , Scattering, Radiation
3.
Nat Commun ; 9(1): 1490, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29662055

ABSTRACT

Plants are extensively used in traditional medicine, and several plant antimicrobial peptides have been described as potential alternatives to conventional antibiotics. However, after more than four decades of research no plant antimicrobial peptide is currently used for treating bacterial infections, due to their length, post-translational modifications or  high dose requirement for a therapeutic effect . Here we report the design of antimicrobial peptides derived from a guava glycine-rich peptide using a genetic algorithm. This approach yields guavanin peptides, arginine-rich α-helical peptides that possess an unusual hydrophobic counterpart mainly composed of tyrosine residues. Guavanin 2 is characterized as a prototype peptide in terms of structure and activity. Nuclear magnetic resonance analysis indicates that the peptide adopts an α-helical structure in hydrophobic environments. Guavanin 2 is bactericidal at low concentrations, causing membrane disruption and triggering hyperpolarization. This computational approach for the exploration of natural products could be used to design effective peptide antibiotics.


Subject(s)
Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Plant Proteins/chemistry , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Psidium/chemistry , Algorithms , Amino Acid Sequence , Animals , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/biosynthesis , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , Cell Membrane/chemistry , Cell Membrane/drug effects , Combinatorial Chemistry Techniques , Drug Design , Escherichia coli/drug effects , Escherichia coli/growth & development , Hydrophobic and Hydrophilic Interactions , Mice , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Plant Proteins/biosynthesis , Plant Proteins/genetics , Plant Proteins/pharmacology , Protein Structure, Secondary , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/growth & development , Psidium/metabolism , Skin/drug effects , Skin/microbiology , Structure-Activity Relationship
4.
Sci Rep ; 6: 27128, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27292548

ABSTRACT

Clavanins is a class of peptides (23aa) histidine-rich, free of post-translational modifications. Clavanins have been studied largely for their ability to disrupt bacterial membranes. In the present study, the interaction of clavanin A with membranes was assessed by dynamic light scattering, zeta potential and permeabilization assays. We observed through those assays that clavanin A lysis bacterial cells at concentrations corresponding to its MIC. Further, the structure and function of clavanin A was investigated. To better understand how clavanin interacted with bacteria, its NMR structure was elucidated. The solution state NMR structure of clavanin A in the presence of TFE-d3 indicated an α-helical conformation. Secondary structures, based on circular dichroism measurements in anionic sodium dodecyl sulfate (SDS) and TFE (2,2,2-trifluorethanol), in silico lipid-peptide docking and molecular simulations with lipids DPPC and DOPC revealed that clavanin A can adopt a variety of folds, possibly influencing its different functions. Microcalorimetry assays revealed that clavanin A was capable of discriminating between different lipids. Finally, clavanin A was found to eradicate bacterial biofilms representing a previously unrecognized function.


Subject(s)
Bacteria/drug effects , Biofilms/drug effects , Blood Proteins/chemistry , Lipid Bilayers/metabolism , Urochordata/metabolism , Animals , Bacterial Physiological Phenomena/drug effects , Blood Proteins/pharmacology , Cell Membrane/drug effects , Circular Dichroism , Dynamic Light Scattering , Hemocytes/chemistry , Hemocytes/metabolism , Microbial Sensitivity Tests , Molecular Docking Simulation , Protein Structure, Secondary , Urochordata/chemistry
5.
Protein Pept Lett ; 22(8): 719-26, 2015.
Article in English | MEDLINE | ID: mdl-26059694

ABSTRACT

Antimicrobial peptides (AMPs) appear as a promising therapeutic candidate against multiresistant pathogens, because they are able to kill microorganisms and have low toxicity of resistance cells. Hylin a1 (Hy-a1, IFGAILPLALGALKNLIK-NH2) is a peptide extracted from the skin secretion of the frog Hypsiboas albopunctatus, which displays antimicrobial and hemolytic activities. We report here structural studies of Hy-a1 using different techniques such as fluorescence, CD and NMR. Our data showed that Hy-a1 acquires a well defined amphipathic α-helix when interacting with a membrane-like environment. Furthermore, Hy-a1 presented different affinity when compared to membranes of zwitterionic or anionic lipid composition. Finally, we proposed a molecular interaction model of this peptide with micelles.


Subject(s)
Amphibian Proteins/chemistry , Amphibian Proteins/metabolism , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/metabolism , Membranes, Artificial , Micelles , Animals , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Porosity , Ranidae
SELECTION OF CITATIONS
SEARCH DETAIL
...