Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(8): 12549-12561, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157412

ABSTRACT

The light-matter interaction between plasmonic nanocavity modes and excitons at the nanometer scale is here addressed in the scanning tunneling microscope configuration where an MoSe2 monolayer is located between the tip and the substrate. We investigate by optical excitation the electromagnetic modes of this hybrid Au/MoSe2/Au tunneling junction using numerical simulations where electron tunneling and the anisotropic character of the MoSe2 layer are taken into account. In particular, we pointed out gap plasmon modes and Fano-type plasmon-exciton coupling taking place at the MoSe2/Au substrate interface. The spectral properties and spatial localization of these modes are studied as a function of the tunneling parameters and incident polarization.

2.
Article in English | MEDLINE | ID: mdl-35457736

ABSTRACT

The emergence of new psychoactive substances has earned a great deal of attention, and several reports of acute poisoning and deaths have been issued involving, for instance, synthetic opiates. In recent years, there have been profound alterations in the legislation concerning consumption, marketing, and synthesis of these compounds; rapid alert systems have also been subject to changes, and new substances and new markets, mainly through the internet, have appeared. Their effects and how they originate in consumers are still mostly unknown, primarily in what concerns chronic toxicity. This review intends to provide a detailed description of these substances from the point of view of consumption, toxicokinetics, and health consequences, including case reports on intoxications in order to help researchers and public health agents working daily in this area.


Subject(s)
Illicit Drugs , Analgesics, Opioid , Marketing , Psychotropic Drugs , Public Health
3.
J Chem Phys ; 155(12): 124114, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34598574

ABSTRACT

In this work, we investigate the Wigner localization of two interacting electrons at very low density in two and three dimensions using the exact diagonalization of the many-body Hamiltonian. We use our recently developed method based on Clifford periodic boundary conditions with a renormalized distance in the Coulomb potential. To accurately represent the electronic wave function, we use a regular distribution in space of Gaussian-type orbitals and we take advantage of the translational symmetry of the system to efficiently calculate the electronic wave function. We are thus able to accurately describe the wave function up to very low density. We validate our approach by comparing our results to a semi-classical model that becomes exact in the low-density limit. With our approach, we are able to observe the Wigner localization without ambiguity.

4.
Sci Rep ; 11(1): 3359, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33564056

ABSTRACT

Coronaviruses silently circulate in human and animal populations, causing mild to severe diseases. Therefore, livestock are important components of a "One Health" perspective aimed to control these viral infections. However, at present there is no example that considers pig genetic resources in this context. In this study, we investigated the variability of four genes (ACE2, ANPEP and DPP4 encoding for host receptors of the viral spike proteins and TMPRSS2 encoding for a host proteinase) in 23 European (19 autochthonous and three commercial breeds and one wild boar population) and two Asian Sus scrofa populations. A total of 2229 variants were identified in the four candidate genes: 26% of them were not previously described; 29 variants affected the protein sequence and might potentially interact with the infection mechanisms. The results coming from this work are a first step towards a "One Health" perspective that should consider conservation programs of pig genetic resources with twofold objectives: (i) genetic resources could be reservoirs of host gene variability useful to design selection programs to increase resistance to coronaviruses; (ii) the described variability in genes involved in coronavirus infections across many different pig populations might be part of a risk assessment including pig genetic resources.


Subject(s)
Coronavirus Infections/genetics , Genetic Variation , Sus scrofa/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , Breeding , CD13 Antigens/genetics , Dipeptidyl Peptidase 4/genetics , Gene Frequency , Genetics, Population , High-Throughput Nucleotide Sequencing , Humans , INDEL Mutation , One Health , Polymorphism, Single Nucleotide , Receptors, Virus/genetics , Serine Endopeptidases/genetics , Swine , Whole Genome Sequencing
5.
Genet Sel Evol ; 52(1): 33, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32591011

ABSTRACT

BACKGROUND: Natural and artificial directional selection in cosmopolitan and autochthonous pig breeds and wild boars have shaped their genomes and resulted in a reservoir of animal genetic diversity. Signatures of selection are the result of these selection events that have contributed to the adaptation of breeds to different environments and production systems. In this study, we analysed the genome variability of 19 European autochthonous pig breeds (Alentejana, Bísara, Majorcan Black, Basque, Gascon, Apulo-Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano, Sarda, Krskopolje pig, Black Slavonian, Turopolje, Moravka, Swallow-Bellied Mangalitsa, Schwäbisch-Hällisches Schwein, Lithuanian indigenous wattle and Lithuanian White old type) from nine countries, three European commercial breeds (Italian Large White, Italian Landrace and Italian Duroc), and European wild boars, by mining whole-genome sequencing data obtained by using a DNA-pool sequencing approach. Signatures of selection were identified by using a single-breed approach with two statistics [within-breed pooled heterozygosity (HP) and fixation index (FST)] and group-based FST approaches, which compare groups of breeds defined according to external traits and use/specialization/type. RESULTS: We detected more than 22 million single nucleotide polymorphisms (SNPs) across the 23 compared populations and identified 359 chromosome regions showing signatures of selection. These regions harbour genes that are already known or new genes that are under selection and relevant for the domestication process in this species, and that affect several morphological and physiological traits (e.g. coat colours and patterns, body size, number of vertebrae and teats, ear size and conformation, reproductive traits, growth and fat deposition traits). Wild boar related signatures of selection were detected across all the genome of several autochthonous breeds, which suggests that crossbreeding (accidental or deliberate) occurred with wild boars. CONCLUSIONS: Our findings provide a catalogue of genetic variants of many European pig populations and identify genome regions that can explain, at least in part, the phenotypic diversity of these genetic resources.


Subject(s)
Genotyping Techniques/methods , Selection, Genetic/genetics , Swine/genetics , Acclimatization/genetics , Adaptation, Physiological/genetics , Algorithms , Animals , Breeding , Domestication , Europe , Female , Genome/genetics , Genomics/methods , Genotype , Male , Models, Genetic , Phenotype , Polymorphism, Single Nucleotide/genetics , Whole Genome Sequencing/methods
6.
PLoS One ; 13(11): e0207475, 2018.
Article in English | MEDLINE | ID: mdl-30458028

ABSTRACT

The aim of this work was to analyse the distribution of causal and candidate mutations associated to relevant productive traits in twenty local European pig breeds. Also, the potential of the SNP panel employed for elucidating the genetic structure and relationships among breeds was evaluated. Most relevant genes and mutations associated with pig morphological, productive, meat quality, reproductive and disease resistance traits were prioritized and analyzed in a maximum of 47 blood samples from each of the breeds (Alentejana, Apulo-Calabrese, Basque, Bísara, Majorcan Black, Black Slavonian (Crna slavonska), Casertana, Cinta Senese, Gascon, Iberian, Krskopolje (Krskopoljski), Lithuanian indigenous wattle, Lithuanian White Old Type, Mora Romagnola, Moravka, Nero Siciliano, Sarda, Schwäbisch-Hällisches Schwein (Swabian Hall pig), Swallow-Bellied Mangalitsa and Turopolje). We successfully analyzed allelic variation in 39 polymorphisms, located in 33 candidate genes. Results provide relevant information regarding genetic diversity and segregation of SNPs associated to production and quality traits. Coat color and morphological trait-genes that show low level of segregation, and fixed SNPs may be useful for traceability. On the other hand, we detected SNPs which may be useful for association studies as well as breeding programs. For instance, we observed predominance of alleles that might be unfavorable for disease resistance and boar taint in most breeds and segregation of many alleles involved in meat quality, fatness and growth traits. Overall, these findings provide a detailed catalogue of segregating candidate SNPs in 20 European local pig breeds that may be useful for traceability purposes, for association studies and for breeding schemes. Population genetic analyses based on these candidate genes are able to uncover some clues regarding the hidden genetic substructure of these populations, as the extreme genetic closeness between Iberian and Alentejana breeds and an uneven admixture of the breeds studied. The results are in agreement with available knowledge regarding breed history and management, although largest panels of neutral markers should be employed to get a deeper understanding of the population's structure and relationships.


Subject(s)
Breeding , Genetics, Population , Quantitative Trait Loci/genetics , Swine/genetics , Animals , Genotype , Meat , Phenotype , Polymorphism, Single Nucleotide/genetics , Spain , Swine/classification
7.
Genet Sel Evol ; 47: 20, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25887840

ABSTRACT

BACKGROUND: In previous studies on an Iberian x Landrace cross, we have provided evidence that supported the porcine ELOVL6 gene as the major causative gene of the QTL on pig chromosome 8 for palmitic and palmitoleic acid contents in muscle and backfat. The single nucleotide polymorphism (SNP) ELOVL6:c.-533C > T located in the promoter region of ELOVL6 was found to be highly associated with ELOVL6 expression and, accordingly, with the percentages of palmitic and palmitoleic acids in longissimus dorsi and adipose tissue. The main goal of the current work was to further study the role of ELOVL6 on these traits by analyzing the regulation of the expression of ELOVL6 and the implication of ELOVL6 polymorphisms on meat quality traits in pigs. RESULTS: High-throughput sequencing of BAC clones that contain the porcine ELOVL6 gene coupled to RNAseq data re-analysis showed that two isoforms of this gene are expressed in liver and adipose tissue and that they differ in number of exons and 3'UTR length. Although several SNPs in the 3'UTR of ELOVL6 were associated with palmitic and palmitoleic acid contents, this association was lower than that previously observed with SNP ELOVL6:c.-533C > T. This SNP is in full linkage disequilibrium with SNP ELOVL6:c.-394G > A that was identified in the binding site for estrogen receptor alpha (ERα). Interestingly, the ELOVL6:c.-394G allele is associated with an increase in methylation levels of the ELOVL6 promoter and with a decrease of ELOVL6 expression. Therefore, ERα is clearly a good candidate to explain the regulation of ELOVL6 expression through dynamic epigenetic changes in the binding site of known regulators of ELOVL6 gene, such as SREBF1 and SP1. CONCLUSIONS: Our results strongly suggest the ELOVL6:c.-394G > A polymorphism as the causal mutation for the QTL on pig chromosome 8 that affects fatty acid composition in pigs.


Subject(s)
Epigenesis, Genetic/physiology , Fatty Acids/metabolism , Mutation , Polymorphism, Single Nucleotide/physiology , Quantitative Trait Loci , Adipose Tissue/physiology , Alleles , Animals , Chromosomes, Mammalian , Crosses, Genetic , DNA/analysis , Linkage Disequilibrium , Sus scrofa/genetics , Swine
8.
BMC Genet ; 15: 148, 2014 Dec 20.
Article in English | MEDLINE | ID: mdl-25526890

ABSTRACT

BACKGROUND: Linkage maps are essential tools for the study of several topics in genome biology. High density linkage maps for the porcine autosomes have been constructed exploiting the high density data provided by the PorcineSNP60 BeadChip. However, a high density SSCX linkage map has not been reported up to date. The aim of the current study was to build an accurate linkage map of SSCX to provide precise estimates of recombination rates along this chromosome and creating a new tool for QTL fine mapping. RESULTS: A female-specific high density linkage map was built for SSCX using Sscrofa10.2 annotation. The total length of this chromosome was 84.61 cM; although the average recombination rate was 0.60 cM/Mb, both cold and hot recombination regions were identified. A Bayesian probabilistic to genetic groups and revealed that the animals used in the current study for linkage map construction were likely to be carriers of X chromosomes of European origin. Finally, the newly generated linkage map was used to fine-map a QTL at 16 cM for intramuscular fat content (IMF) measured on longissimus dorsi. The sulfatase isozyme S gene constitutes a functional and positional candidate gene underlying the QTL effect. CONCLUSIONS: The current study presents for the first time a high density linkage map for SSCX and supports the presence of cold and hot recombination intervals along this chromosome. The large cold recombination region in the central segment of the chromosome is not likely to be due to structural differences between X chromosomes of European and Asian origin. In addition, the newly generated linkage map has allowed us to fine-map a QTL on SSCX for fat deposition.


Subject(s)
Sus scrofa/genetics , X Chromosome/genetics , Adiposity/genetics , Animals , Bayes Theorem , Chromosome Mapping , Female , Genetic Association Studies , Male , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Recombination, Genetic
9.
Physiol Genomics ; 46(6): 195-206, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24280257

ABSTRACT

Previous studies on Iberian × Landrace (IBMAP) pig intercrosses have enabled the identification of several quantitative trait locus (QTL) regions related to growth and fatness traits; however, the genetic variation underlying those QTLs are still unknown. These traits are not only relevant because of their impact on economically important production traits, but also because pig constitutes a widely studied animal model for human obesity and obesity-related diseases. The hypothalamus is the main gland regulating growth, food intake, and fat accumulation. Therefore, the aim of this work was to identify genes and/or gene transcripts involved in the determination of growth and fatness in pig by a comparison of the whole hypothalamic transcriptome (RNA-Seq) in two groups of phenotypically divergent IBMAP pigs. Around 16,000 of the ∼25.010 annotated genes were expressed in these hypothalamic samples, with most of them showing intermediate expression levels. Functional analyses supported the key role of the hypothalamus in the regulation of growth, fat accumulation, and energy expenditure. Moreover, 58,927 potentially new isoforms were detected. More than 250 differentially expressed genes and novel transcript isoforms were identified between the two groups of pigs. Twenty-one DE genes/transcripts that colocalized in previously identified QTL regions and/or whose biological functions are related to the traits of interest were explored in more detail. Additionally, the transcription factors potentially regulating these genes and the subjacent networks and pathways were also analyzed. This study allows us to propose strong candidate genes for growth and fatness based on expression patterns, genomic location, and network interactions.


Subject(s)
Adipose Tissue/growth & development , Adipose Tissue/metabolism , Gene Expression Profiling , Hypothalamus/metabolism , Animals , Female , Gene Ontology , Gene Regulatory Networks , Male , Models, Genetic , Oligonucleotide Array Sequence Analysis , Phenotype , Principal Component Analysis , Quantitative Trait Loci/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA , Swine
10.
BMC Genomics ; 14: 845, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24295214

ABSTRACT

BACKGROUND: Porcine fatty acid composition is a key factor for quality and nutritive value of pork. Several QTLs for fatty acid composition have been reported in diverse fat tissues. The results obtained so far seem to point out different genetic control of fatty acid composition conditional on the fat deposits. Those studies have been conducted using simple approaches and most of them focused on one single tissue. The first objective of the present study was to identify tissue-specific and tissue-consistent QTLs for fatty acid composition in backfat and intramuscular fat, combining linkage mapping and GWAS approaches and conducted under single and multitrait models. A second aim was to identify powerful candidate genes for these tissue-consistent QTLs, using microarray gene expression data and following a targeted genetical genomics approach. RESULTS: The single model analyses, linkage and GWAS, revealed over 30 and 20 chromosomal regions, 24 of them identified here for the first time, specifically associated to the content of diverse fatty acids in BF and IMF, respectively. The analyses with multitrait models allowed identifying for the first time with a formal statistical approach seven different regions with pleiotropic effects on particular fatty acids in both fat deposits. The most relevant were found on SSC8 for C16:0 and C16:1(n-7) fatty acids, detected by both linkage and GWAS approaches. Other detected pleiotropic regions included one on SSC1 for C16:0, two on SSC4 for C16:0 and C18:2, one on SSC11 for C20:3 and the last one on SSC17 for C16:0. Finally, a targeted eQTL scan focused on regions showing tissue-consistent effects was conducted with Longissimus and fat gene expression data. Some powerful candidate genes and regions were identified such as the PBX1, RGS4, TRIB3 and a transcription regulatory element close to ELOVL6 gene to be further studied. CONCLUSIONS: Complementary genome scans have confirmed several chromosome regions previously associated to fatty acid composition in backfat and intramuscular fat, but even more, to identify new ones. Although most of the detected regions were tissue-specific, supporting the hypothesis that the major part of genes affecting fatty acid composition differs among tissues, seven chromosomal regions showed tissue-consistent effects. Additional gene expression analyses have revealed powerful target regions to carry the mutation responsible for the pleiotropic effects.


Subject(s)
Adipose Tissue/metabolism , Back Muscles/metabolism , Fatty Acids/metabolism , Gene Expression , Genome-Wide Association Study , Genotype , Animals , Chromosome Mapping , Female , Gene Expression Profiling , Genetic Linkage , Male , Meat , Organ Specificity/genetics , Quantitative Trait Loci , Swine
11.
BMC Genomics ; 14: 843, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24289474

ABSTRACT

BACKGROUND: In pigs, adipose tissue is one of the principal organs involved in the regulation of lipid metabolism. It is particularly involved in the overall fatty acid synthesis with consequences in other lipid-target organs such as muscles and the liver. With this in mind, we have used massive, parallel high-throughput sequencing technologies to characterize the porcine adipose tissue transcriptome architecture in six Iberian x Landrace crossbred pigs showing extreme phenotypes for intramuscular fatty acid composition (three per group). RESULTS: High-throughput RNA sequencing was used to generate a whole characterization of adipose tissue (backfat) transcriptome. A total of 4,130 putative unannotated protein-coding sequences were identified in the 20% of reads which mapped in intergenic regions. Furthermore, 36% of the unmapped reads were represented by interspersed repeats, SINEs being the most abundant elements. Differential expression analyses identified 396 candidate genes among divergent animals for intramuscular fatty acid composition. Sixty-two percent of these genes (247/396) presented higher expression in the group of pigs with higher content of intramuscular SFA and MUFA, while the remaining 149 showed higher expression in the group with higher content of PUFA. Pathway analysis related these genes to biological functions and canonical pathways controlling lipid and fatty acid metabolisms. In concordance with the phenotypic classification of animals, the major metabolic pathway differentially modulated between groups was de novo lipogenesis, the group with more PUFA being the one that showed lower expression of lipogenic genes. CONCLUSIONS: These results will help in the identification of genetic variants at loci that affect fatty acid composition traits. The implications of these results range from the improvement of porcine meat quality traits to the application of the pig as an animal model of human metabolic diseases.


Subject(s)
Adipose Tissue/metabolism , Fatty Acids/biosynthesis , Muscles/metabolism , Transcriptome , Animals , DNA Transposable Elements , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Genome-Wide Association Study , Lipid Metabolism , Male , Metabolic Networks and Pathways , Molecular Sequence Annotation , Muscle, Skeletal/metabolism , Open Reading Frames , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Swine
12.
Anim Biotechnol ; 24(3): 168-86, 2013.
Article in English | MEDLINE | ID: mdl-23777347

ABSTRACT

A previous study allowed the identification of two QTL regions at positions 11-34 cM (QTL1) and 68-76 cM (QTL2) on porcine chromosome SSC12 affecting several backfat fatty acids in an Iberian x Landrace F2 intercross. In the current study, different approaches were performed in order to better delimit the quoted QTL regions and analyze candidate genes. A new chromosome scan, using 81 SNPs selected from the Porcine 60KBeadChip and six previously genotyped microsatellites have refined the QTL positions. Three new functional candidate genes (ACOX1, ACLY, and SREBF1) have been characterized. Moreover, two putative promoters of porcine ACACA gene have also been investigated. New isoforms and 24 SNPs were detected in the four candidate genes, 19 of which were genotyped in the population. ACOX1 and ACLY SNPs failed to explain the effects of QTL1 on palmitic and gadoleic fatty acids. QTL2, affecting palmitoleic, stearic, and vaccenic fatty acids, maps close to the ACACA gene location. The most significant associations have been detected between one intronic (g.53840T > C) and one synonymous (c.5634T > C) ACACA SNPs and these fatty acids. Complementary analyses including ACACA gene expression quantification and association studies in other porcine genetic types do not support the expected causal effect of ACACA SNPs.


Subject(s)
Adipose Tissue/metabolism , Fatty Acids/analysis , Lipid Metabolism/genetics , Quantitative Trait Loci , Swine/genetics , Acetyl-CoA Carboxylase/genetics , Adipose Tissue/chemistry , Animals , Back , Chromosomes, Mammalian , Female , Genetic Linkage , Male , Polymorphism, Genetic , Sterol Regulatory Element Binding Protein 1/genetics
13.
Front Genet ; 2: 101, 2011.
Article in English | MEDLINE | ID: mdl-22303395

ABSTRACT

Fatty acid composition is a critical aspect of pork because it affects sensorial and technological aspects of meat quality and it is relevant for human health. Previous studies identified significant QTLs in porcine chromosome 12 for fatty acid profile of back fat (BF) and intramuscular fat (IMF). In the present study, 374 SNPs mapped in SSC12 from the 60K Porcine SNP Beadchip were used. We have combined linkage and association analyses with expression data analysis in order to identify regions of SSC12 that could affect fatty acid composition of IMF in longissimus muscle. The QTL scan showed a region around the 60-cM position that significantly affects palmitic fatty acid and two related fatty acid indexes. The Iberian QTL allele increased the palmitic content (+2.6% of mean trait). This QTL does not match any of those reported in the previous study on fatty acid composition of BF, suggesting different genetic control acting at both tissues. The SNP association analyses showed significant associations with linolenic and palmitic acids besides several indexes. Among the polymorphisms that affect palmitic fatty acid and match the QTL region at 60 cM, there were three that mapped in the Phosphatidylcholine transfer protein (PCTP) gene and one in the Acetyl-CoA Carboxylase ∝ gene (ACACA). Interestingly one of the PCTP SNPs also affected significantly unsaturated and double bound indexes and the ratio between polyunsaturated/monounsaturated fatty acids. Differential expression was assessed on longissimus muscle conditional on the genotype of the QTL and on the most significant SNPs, according to the results obtained in the former analyses. Results from the microarray expression analyses, validated by RT-qPCR, showed that PCTP expression levels significantly vary depending on the QTL as well as on the own PCTP genotype. The results obtained with the different approaches point out the PCTP gene as a powerful candidate underlying the QTL for palmitic content.

14.
BMC Genomics ; 11: 593, 2010 Oct 22.
Article in English | MEDLINE | ID: mdl-20969757

ABSTRACT

BACKGROUND: Recent studies in pigs have detected copy number variants (CNVs) using the Comparative Genomic Hybridization technique in arrays designed to cover specific porcine chromosomes. The goal of this study was to identify CNV regions (CNVRs) in swine species based on whole genome SNP genotyping chips. RESULTS: We used predictions from three different programs (cnvPartition, PennCNV and GADA) to analyze data from the Porcine SNP60 BeadChip. A total of 49 CNVRs were identified in 55 animals from an Iberian x Landrace cross (IBMAP) according to three criteria: detected in at least two animals, contained three or more consecutive SNPs and recalled by at least two programs. Mendelian inheritance of CNVRs was confirmed in animals belonging to several generations of the IBMAP cross. Subsequently, a segregation analysis of these CNVRs was performed in 372 additional animals from the IBMAP cross and its distribution was studied in 133 unrelated pig samples from different geographical origins. Five out of seven analyzed CNVRs were validated by real time quantitative PCR, some of which coincide with well known examples of CNVs conserved across mammalian species. CONCLUSIONS: Our results illustrate the usefulness of Porcine SNP60 BeadChip to detect CNVRs and show that structural variants can not be neglected when studying the genetic variability in this species.


Subject(s)
DNA Copy Number Variations/genetics , Genome/genetics , Microspheres , Oligonucleotide Array Sequence Analysis/methods , Polymorphism, Single Nucleotide/genetics , Sus scrofa/genetics , Animals , Crosses, Genetic , Databases, Genetic , Female , Humans , Male , Molecular Sequence Annotation , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Software
15.
Genet Sel Evol ; 42: 23, 2010 Jun 25.
Article in English | MEDLINE | ID: mdl-20576168

ABSTRACT

BACKGROUND: The aim of this work was to study the effects on litter size of variants of the porcine genes RBP4, ESR1 and IGF2, currently used in genetic tests for different purposes. Moreover, we investigated a possible effect of the interaction between RBP4-MspI and ESR1-PvuII polymorphisms. The IGF2-intron3-G3072A polymorphism is actually used to select lean growth, but other possible effects of this polymorphism on reproductive traits need to be evaluated. METHODS: Detection of polymorphisms in the genomic and cDNA sequences of RBP4 gene was carried out. RBP4-MspI and IGF2-intron3-G3072A were genotyped in a hyperprolific Chinese-European line (Tai-Zumu) and three new RBP4 polymorphisms were genotyped in different pig breeds. A bivariate animal model was implemented in association analyses considering the number of piglets born alive at early (NBA12) and later parities (NBA3+ ) as different traits. A joint analysis of RBP4-MspI and ESR1-PvuII was performed to test their possible interaction. In the IGF2 analysis, paternal or maternal imprinting effects were also considered. RESULTS: Four different RBP4 haplotypes were detected (TGAC, GGAG, GAAG and GATG) in different pig breeds and wild boars. A significant interaction effect between RBP4-MspI and ESR1-PvuII polymorphisms of 0.61 +/- 0.29 piglets was detected on NBA3+. The IGF2 analysis revealed a significant increase on NBA3+ of 0.74 +/- 0.37 piglets for the paternally inherited allele A. CONCLUSIONS: All the analyzed pig and wild boar populations shared one of the four detected RBP4 haplotypes. This suggests an ancestral origin of the quoted haplotype. The joint use of RBP4-MspI and ESR1-PvuII polymorphisms could be implemented to select for higher prolificacy in the Tai-Zumu line. In this population, the paternal allele IGF2-intron3-3072A increased litter size from the third parity. The non-additive effects on litter size reported here should be tested before implementation in other pig breeding schemes.


Subject(s)
Insulin-Like Growth Factor II/genetics , Litter Size/genetics , Parity/genetics , Polymorphism, Single Nucleotide/genetics , Receptors, Estrogen/genetics , Retinol-Binding Proteins, Plasma/genetics , Sus scrofa/genetics , Animals , China , Environment , Europe , Female , Haplotypes/genetics , Inheritance Patterns/genetics , Introns/genetics , Models, Genetic , Phylogeny , Pregnancy
16.
Mamm Genome ; 18(1): 53-63, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17242860

ABSTRACT

Scrapie (SC) is a transmissible spongiform encephalopathy (TSE) in sheep and goats. Susceptibility to this neurodegenerative disease is controlled mainly by point mutations at the PRNP locus. Other genes, apart from PRNP, have been reported to modulate resistance/susceptibility to SC. On the basis of several studies on Alzheimer's disease and different TSE models, and of requirement for correct homeostasis of cytokines in brain, IL1B and IL1RN were chosen as putative positional and functional candidate genes that might be involved in the polygenic variance mentioned above. In the present work, ovine IL1B and IL1RN genes were partially isolated and characterized, including promoter and other regulatory regions. In addition, several sequence polymorphisms were identified. Furthermore, their cytogenetic positions on sheep chromosomes were determined by FISH and confirmed by linkage analysis, localizing both genes in OAR3p22, a region previously described as carrying a QTL for SC incubation period in sheep. Finally, expression analyses were carried out in eight naturally SC-infected and five uninfected sheep with the same genotype for PRNP (ARQ/ARQ). This comparison was performed using real-time RT-PCR in samples of spleen and cerebellum. Results showed differences in the expression of both cytokines in cerebellum (p < 0.05) but not in spleen (p > 0.05).


Subject(s)
Interleukin-1/genetics , Scrapie/genetics , Scrapie/immunology , Sheep/genetics , Sheep/immunology , Animals , Base Sequence , Cerebellum/immunology , Chromosome Mapping , DNA Primers/genetics , DNA, Complementary/genetics , Gene Expression , Genetic Predisposition to Disease , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin-1beta/genetics , Molecular Sequence Data , Polymorphism, Genetic , Prions/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...