Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Genome ; 13(3): e20048, 2020 11.
Article in English | MEDLINE | ID: mdl-33217213

ABSTRACT

Breeding forest species can be a costly and slow process because of the extensive areas needed for field trials and the long periods (e.g., five years) that are required to measure economically and environmentally relevant phenotypes (e.g., adult plant biomass or plant height). Genomic selection (GS) and indirect selection using early phenotypes (e.g., phenotypes collected in greenhouse conditions) are two ways by which tree breeding can be accelerated. These approaches can both reduce the costs of field-testing and the time required to make selection decisions. Moreover, these approaches can be highly synergistic. Therefore, in this study, we used a data set comprising DNA genotypes and longitudinal measurements of growth collected from a population of Populus deltoides W. Bartram ex Marshall (eastern cottonwood) in the greenhouse and the field, to evaluate the potential impact of integrating large-scale greenhouse phenotyping with conventional GS. We found that the integration of greenhouse phenotyping and GS can deliver very early selection decisions that are moderately accurate. Therefore, we conclude that the adoption of these approaches, in conjunction with reproductive techniques that shorten the generation interval, can lead to an unprecedented acceleration of selection gains in P. deltoides and, potentially, other commercially planted tree species.


Subject(s)
Selection, Genetic , Trees , Breeding , Forests , Genomics , Trees/genetics
2.
ISRN Mol Biol ; 2014: 828102, 2014.
Article in English | MEDLINE | ID: mdl-27335680

ABSTRACT

The aim of this study was to use multiple DNA markers for detection of QTLs related to resistance to white mold in an F2 population of common bean evaluated by the straw test method. The DNA from 186 F2 plants and from the parents was extracted for genotypic evaluation using SSR, AFLP, and SRAP markers. For phenotypic analysis, 186 F2:4 progenies and ten lines were evaluated, in a 14 × 14 triple lattice experimental design. The adjusted mean values of the F2:4 progenies were used for identification of QTLs by Bayesian shrinkage analysis. Significant differences were observed among the progenies for reaction to white mold. In identification of QTLs, 17 markers identified QTLs for resistance-13 SSRs and 4 AFLPs. The moving away method under the Bayesian approach proved to be efficient in the identification of QTLs when a genetic map is not used due to the low density of markers. The ME1 and BM211 markers are near the QTLs, with the effect of increasing resistance to white mold, and they have high heritability. They are thus promising for marker-assisted selection.

SELECTION OF CITATIONS
SEARCH DETAIL
...