Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Type of study
Language
Publication year range
1.
Neurotoxicology ; 94: 59-70, 2023 01.
Article in English | MEDLINE | ID: mdl-36336098

ABSTRACT

Pyrrolizidine alkaloids (PAs) are secondary plant metabolites playing an important role as phytotoxins in the plant defense mechanisms and can be present as contaminant in the food of humans and animals. The PA monocrotaline (MCT), one of the major plant derived toxin that affect humans and animals, is present in a high concentration in Crotalaria spp. (Leguminosae) seeds and can induce toxicity after consumption, characterized mainly by hepatotoxicity and pneumotoxicity. However, the effects of the ingestion of MCT in the central nervous system (CNS) are still poorly elucidated. Here we investigated the effects of MCT oral acute administration on the behavior and CNS toxicity in rats. Male adult Wistar were treated with MCT (109 mg/Kg, oral gavage) and three days later the Elevated Pluz Maze test demonstrated that MCT induced an anxiolytic-like effect, without changes in novelty habituation and in operational and spatial memory profiles. Histopathology revealed that the brain of MCT-intoxicated animals presented hyperemic vascular structures in the hippocampus, parahippocampal cortex and neocortex, mild perivascular edema in the neocortex, hemorrhagic focal area in the brain stem, hemorrhage and edema in the thalamus. MCT also induced neurotoxicity in the cortex and hippocampus, as revealed by Fluoro Jade-B and Cresyl Violet staining, as well astrocyte reactivity, revealed by immunocytochemistry for glial fibrillary acidic protein. Additionally, it was demonstrated by RT-qPCR that MCT induced up-regulation on mRNA expression of neuroinflammatory mediator, especially IL1ß and CCL2 in the hippocampus and cortex, and down-regulation on mRNA expression of neurotrophins HGDF and BDNF in the cortex. Together, these results demonstrate that the ingestion of MCT induces cerebrovascular lesions and toxicity to neurons that are associated to astroglial cell response and neuroinflammation in the cortex and hippocampus of rats, highlighting CNS damages after acute intoxication, also putting in perspective it uses as a model for cerebrovascular damage.


Subject(s)
Gliosis , Monocrotaline , Humans , Rats , Animals , Monocrotaline/toxicity , Monocrotaline/metabolism , Gliosis/chemically induced , Rats, Wistar , Astrocytes/metabolism , RNA, Messenger/metabolism
2.
Chem Biodivers ; 14(3)2017 Mar.
Article in English | MEDLINE | ID: mdl-27797447

ABSTRACT

One new chromone 3,3-dimethylallylspatheliachromene methyl ether (1), as well as five known chromones, 6-(3-methylbut-2-enyl) allopteroxylin methyl ether (2), 6-(3-methylbut-2-enyl) allopteroxylin (3), 3,3-dimethylallylspatheliachromene (4), 5-O-methylcneorumchromone K (5) and spatheliabischromene (6), two alkaloids, 8-methoxy-N-methylflindersine (7) and 8-methoxyflindersine (8), and two limonoids, limonin diosphenol (9) and rutaevin (10), were isolated from Dictyoloma vandellianum A. Juss (Rutaceae). Cytotoxic activities towards tumor cell lines B16-F10, HepG2, K562 and HL60 and non-tumor cells PBMC were evaluated for compounds 1 - 6. Compound 1 was the most active showing IC50 values ranging from 6.26 to 14.82 µg/ml in B16-F10 and K562 cell lines, respectively, and presented IC50 value of 11.65 µg/ml in PBMC cell line.


Subject(s)
Chromones/chemistry , Rutaceae/chemistry , Alkaloids/chemistry , Alkaloids/isolation & purification , Alkaloids/toxicity , Animals , Cell Line, Tumor , Cell Survival/drug effects , Chromones/isolation & purification , Chromones/toxicity , HL-60 Cells , Hep G2 Cells , Humans , K562 Cells , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Limonins/chemistry , Limonins/isolation & purification , Limonins/toxicity , Magnetic Resonance Spectroscopy , Mice , Plant Leaves/chemistry , Plant Leaves/metabolism , Rutaceae/metabolism
3.
Rev. bras. farmacogn ; 19(1a): 46-50, Jan.-Mar. 2009. graf
Article in English | LILACS | ID: lil-522420

ABSTRACT

In this study, we investigated the analgesic activity of crude aqueous and methanol extracts obtained from Abarema cochliacarpos bark in mice, and analyzed its phytochemical profile. All the extracts exhibited analgesic properties against the writhing test in mice, but the aqueous and methanol extracts were more active, and more potent than two known analgesic and anti-inflammatory drugs used as reference. They were also active against the capsaicin-model, but inactive when evaluated in the hot-plate test. Phytochemical studies revealed the presence of saponins, catechins, tannins, phenols and anthraquinones.


No presente trabalho foram avaliados a atividade antinociceptiva e o perfil fitoquímico dos extratos aquosos e metanólico produzidos com a casca do caule de Abarema cochliacarpos, uma espécie de Mata Atlântica com diversas indicações populares. Todos os extratos apresentaram atividade analgésica quando avaliados pelo teste das contorções abdominais induzidas pelo ácido acético via intraperitonial, apresentando respostas superiores às drogas usadas como referência, bem como no modelo da dor induzida por capsaicina. A avaliação fitoquímica demonstrou a presença de saponinas, catequinas, taninos, fenóis e antraquinonas.

SELECTION OF CITATIONS
SEARCH DETAIL
...